Citation: | HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033 |
BARNHART J. Occurrences, uses, and properties of chromium[J]. Regulatory Toxicology and Pharmacology, 1997, 26(1 Pt 2):S3-7.
|
谭西顺. 危害人体健康的杀手:六价铬[J]. 劳动保护, 2003(1):61.
|
ELENI V, PETROS G J. Effects of chromium on activated sludge and on the performance of wastewater treatment plants:a review[J]. Water Research, 2012, 46(3):549-570.
|
STERN Z H, HAZEN R E. A study of chromium induced allergic contact dermatitis with 54 volunteers:implications for environmental risk assessment[J]. Occupational and Environmental Medicine, 1994, 51(6):549-570.
|
YOSHINAGA M, NINOMIYA H, HOSSAIN M, et al. A comprehensive study including monitoring, assessment of health effects and development of a remediation method for chromium pollution[J]. Chemosphere, 2018, 201:667-675.
|
ZHU Y F, YAN J W, XIA L, et al. Mechanisms of Cr(Ⅵ) reduction by Bacillus sp. CRB-1, a novel Cr(Ⅵ)-reducing bacterium isolated from tannery activated sludge[J]. Ecotoxicology and Environmental Safety, 2019, 186:109792.
|
BJØRKLUND G, AASETH J, SKALNY A V, et al. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency[J]. Journal of Trace Elements in Medicine and Biology, 2017, 41:41-53.
|
CHAE Y, AN Y J J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem:a review[J]. Environmental Pollution, 2018, 240:387-395.
|
SAHA B, ORVIG C J. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents[J]. Coordination Chemistry Reviews, 2010, 254(23):2959-2972.
|
徐天生, 欧杰, 马晨晨. 微生物还原Cr (Ⅵ)的机理研究进展[J]. 环境工程, 2015, 33(1):32-36.
|
许超, 邢轶兰, 刘鹏, 等. 多硫化钙修复Cr (Ⅵ)污染土壤的原理与应用[J]. 环境工程, 2018, 36(7):128-132.
|
张晓辉, 曹奇光, 谢国莉, 等. 不同还原剂处理实验室Cr (Ⅵ)废水研究[J]. 环境工程, 2014, 32(6):61-64.
|
祝方, 刘涛, 石建惠. 绿色合成纳米零价铁铜淋洗修复Cr (Ⅵ)污染土壤[J]. 环境工程, 2019, 37(4):172-176.
|
邹继颖, 刘辉. 生物吸附剂对重金属Cr (Ⅵ)吸附性能的研究[J]. 环境工程, 2014, 32(2):64-67.
|
JIANG D N, ZENG G M, HUANG D L, et al. Remediation of contaminated soils by enhanced nanoscale zero valent iron[J]. Environmental Research, 2018, 163:217-227.
|
ZHU F, LI L W, REN W J, et al. Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ) in the soil leachate by nZVI/Ni bimetal material[J]. Environmental Pollution, 2017, 227:444-450.
|
王侠, 王欣, 杜艳艳, 等. 改性纳米零价铁对稻田土壤As污染的修复效能[J]. 环境科学研究, 2017, 30(9):1406-1414.
|
NURMI J T, TRATNYEK P G, SARATHY V, et al. Characterization and properties of metallic iron nanoparticles:spectroscopy, electrochemistry, and kinetics[J]. Environmental Science Technology, 2005, 39(5):1221-1230.
|
梁震, 王焰新. 纳米级零价铁的制备及其用于污水处理的机理研究[J]. 环境保护, 2002(4):14-16.
|
邱心泓, 方战强. 修饰型纳米零价铁降解有机卤化物的研究[J]. 化学进展, 2010, 22(增刊1):291-297.
|
SUN Y P, LI X Q, ZHANG W X, et al. A method for the preparation of stable dispersion of zero-valent iron nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 308(1):60-66.
|
YIN H X, DONG Y Z. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles[J]. Water Research, 2007, 41(10):2101-2108.
|
范英宏. 生物炭原位覆盖对重金属铜的污染控制[J]. 环境工程, 2019, 37(6):155-159.
|
王向前, 胡学玉, 陈窈君, 等. 生物炭及改性生物炭对水环境中重金属的吸附固定作用[J].环境工程, 2016, 34(12):32-37.
|
许妍哲, 方战强. 生物炭修复土壤重金属的研究进展[J]. 环境工程, 2015, 33(2):156-159.
|
张晗, 林宁, 黄仁龙, 等. 不同生物质制备的生物炭对菲的吸附特性研究[J]. 环境工程, 2016, 34(10):166-171.
|
HU J J, GUO H C, WANG X H, et al. Utilization of the saccharification residue of rice straw in the preparation of biochar is a novel strategy for reducing CO2 emissions[J]. Science of The Total Environment, 2019, 650:1141-1148.
|
TAN Z X, LIU L Y, ZHANG L M, et al. Mechanistic study of the influence of pyrolysis conditions on potassium speciation in biochar "preparation-application" process[J]. Science of the Total Environment, 2017, 599/600:207-216.
|
ZHAO Y L, ZHANG R Y, LIU H B, et al. Green preparation of magnetic biochar for the effective accumulation of Pb(Ⅱ):performance and mechanism[J]. Chemical Engineering Journal, 2019,375:122011.
|
ZHONG Y, DENG Q, ZHANG P X, et al. Sulfonic acid functionalized hydrophobic mesoporous biochar:design, preparation and acid-catalytic properties[J]. Fuel, 2019, 240:270-277.
|
HU Z H, ZHANG L, ZHONG L L, et al. Preparation of an antibacterial chitosan-coated biochar-nanosilver composite for drinking water purification[J]. Carbohydrate Polymers, 2019, 219:290-297.
|
HUANG Z Y, WANG T L, SHEN M X, et al. Coagulation treatment of swine wastewater by the method of in-situ forming layered double hydroxides and sludge recycling for preparation of biochar composite catalyst[J]. Chemical Engineering Journal, 2019, 369:784-792.
|
孟梁, 侯静文, 郭琳, 等. 芦苇生物炭制备及其对Cu2+的吸附动力学[J]. 实验室研究与探索, 2015, 34(1):5-8.
|
许冬倩. 玉米秸秆生物炭制备及结构特性分析[J]. 广西植物, 2018, 38(9):19-29.
|
LI X, QIAN X R, AN X H, et al. Preparation of a novel composite comprising biochar skeleton and "chrysanthemum" g-C3N4 for enhanced visible light photocatalytic degradation of formaldehyde[J]. Applied Surface Science, 2019, 487:1262-1270.
|
YANG F, ZHANG S S, SUN Y Q, et al. A novel electrochemical modification combined with one-step pyrolysis for preparation of sustainable thorn-like iron-based biochar composites[J]. Bioresource Technology, 2019, 274:379-385.
|
王豆, 郭海艳, 李阳, 等. 蚓粪生物炭制备温度对甲基橙吸附性能的影响[J]. 环境工程学报, 2016,10(9):5172-5178.
|
ZHAI L M, CAI J Z M, LIU J, et al. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities[J]. Biology & Fertility of Soils, 2015, 51(1):113-122.
|
李明, 李忠佩, 刘明, 等. 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响[J]. 中国农业科学, 2015, 48(7):1361-1369.
|
FENG Y, LIU P, WANG Y X, et al. Distribution and speciation of iron in fe-modified biochars and its application in removal of As(Ⅴ), As(Ⅲ), Cr(Ⅵ), and Hg(Ⅱ):an x-ray absorption study[J]. Journal of Hazardous Materials, 2020, 384:121342.
|
KIM H B, KIM J G, KIM S H, et al. Consecutive reduction of Cr(Ⅵ) by Fe(Ⅱ) formed through photo-reaction of iron-dissolved organic matter originated from biochar[J]. Environ Pollut, 2019, 253:231-238.
|
LYU H H, ZHAO H, TANG J C, et al. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite[J]. Chemosphere, 2018, 194:360-369.
|
SU H J, FANG Z Q, TSANG P E, et al. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil[J]. Environmental Pollution, 2016, 214:94-100.
|
孙靖武, 刘宏菊, 孙也. 甘蔗渣负载纳米零价铁吸附剂去除水中Cr(Ⅵ)的研究[J]. 环境工程, 2016, 34(1):51-54.
|
FAN Z X, ZHANG Q, GAO B, et al. Removal of hexavalent chromium by biochar supported nzvi composite:batch and fixed-bed column evaluations, mechanisms, and secondary contamination prevention[J]. Chemosphere, 2019, 217:85-94.
|
魏雪. 生物炭包覆纳米零价铁去除水中硒的研究[D].长沙:湖南大学, 2016.
|
WANG S S, ZHOU Y X, GAO B, et al. The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size[J]. Chemosphere, 2017, 186:495-500.
|
DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(Ⅵ) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332:79-86.
|
MANDAL S, SARKAR B, BOLAN N, et al. Enhancement of chromate reduction in soils by surface modified biochar[J]. Journal of Environmental Management, 2016, 186(Part 2):277-284.
|
AROHAAK. Synthesis of them agneticbiochar composites for useasanadsor bent for there movalofpentachlorophenol from thee ffluent[J]. Bioresource Technology, 2014, 169:525-531.
|
LAWRINENKO M, WANG Z J, HORTON R, et al. Macroporous carbon supported zerovalent iron for remediation of trichloroethylene[J]. ACS Sustainable Chemistry, 2017, 5(2):1586-1593.
|
HUSSAIN I, LI M Y, ZHANG Y Q, et al. Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol[J]. Chemical Engineering Journal, 2017, 311:163-172.
|
SHANG J G, ZONG M Z, YU Y, et al. Removal of Cr(Ⅵ) from water using nanoscale zerovalent iron particles supported on herb-residue biochar[J]. Journal of Environmental Management, 2017, 197:331-337.
|
薛嵩, 钱林波, 晏井春, 等. 生物炭携载纳米零价铁对溶Cr(Ⅵ)的去除[J]. 环境工程学报, 2016, 10(6):2895-2901.
|
林琳, 万金忠, 李群, 等. 生物炭负载纳米零价铁材料的制备及还原降解性能[J]. 生态与农村环境学报, 2017, 33(7):660-664.
|
CHOI H, AL-ABED S R, AGARWAL S, et al. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs[J]. Chemistry of Materials, 2015, 20(11):3649-3655.
|
吴鸿伟, 冯启言, 杨虹, 等. 改性生物炭负载纳米零价铁去除水体中头孢噻肟[J]. 环境科学学报, 2017, 37(7):2691-2698.
|
邱月峰. 生物炭负载纳米铁镍双金属原位修复模拟地下水中三氯乙烷.[D]. 上海:华东理工大学, 2016.
|
薛嵩. 生物炭负载纳米零价铁对有机污染物的去除研究.[D]. 苏州:苏州科技学院, 2015.
|
邓小强. 绿茶提取液合成生物炭负载纳米零价铁修复六价铬污染的地下水.[D]. 太原:太原理工大学, 2018.
|
YAN J C, QIAN L B, GAO W G, et al. Enhanced fenton-like degradation of trichloroethylene by hydrogen peroxide activated with nanoscale zero valent iron loaded on biochar[J]. Scientific Reports, 2017, 7:43051.
|
YAN J C, HAN L, GAO W G, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175:269-274.
|
PONDER S M, DARAB J G, MALLOUK T, et al. Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solutions using supported, nanoscale zero-valent iron[J]. Journal of Molecular Liquids, 2000, 34(12):2564-2569.
|
ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology, 2014, 152:538-542.
|
ZHANG S, LYU H H, TANG J C, et al. A novel biochar supported cmc stabilized nano zero-valent iron composite for hexavalent chromium removal from water[J]. Chemosphere, 2019, 217:686-694.
|
WANG H X, ZHANG M L, LI H Y. Synthesis of nanoscale zerovalent iron (nZVI) supported on biochar for chromium remediation from Aqueous solution and soil[J]. International Journal of Environmental Research and Public Health, 2019, 16(22):4430.
|
QIAN L B, LIU S N, ZHANG W Y, et al. Enhanced reduction and adsorption of hexavalent chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron[J]. Journal of Colloid and Interface Science, 2019, 533:428-436.
|
YANG J H, MA T X, LI X Q, et al. Removal of heavy metals and metalloids by amino-modified biochar supporting nanoscale zero-valent iron[J]. Journal of Environmental Quality, 2018, 47(5):1196-1204.
|
REYHANITABARA A, ALIDOKHTA L. Application of stabilized Fe0 nanoparticles for remediation of Cr(Ⅵ)-spiked soil[J]. European Journal of Soil Science, 2012, 63(5):1-9.
|
SINGH R, MISRA V, SINGH R P. Rana pratap singh.Remediation of Cr(Ⅵ) contaminated soil by zero-valent iron nanoparticles entrapped in calcium alginate beads[J]. International Conference on Environmental Science and Development, 2011:162-164.
|
ZHIHUI A I, CHENG Y, ZHANG L, et al. Efficient Removal of Cr(Ⅵ) from Aqueous Solution with Fe@Fe2O3 Core-Shell Nanowires[J]. Environmental ence & Technology, 2008, 42(18):6955-6960.
|
EL-SHAZLY A H, MUBARAK A A, KONSOWA A H. Hexavalent chromium reduction using a fixed bed of scrap bearing iron spheres[J]. Desalination, 2005, 185(1/2/3):307-316.
|
XU J W, YIN Y G, TAN Z Q, et al. Enhanced removal of Cr(Ⅵ) by biochar with fe as electron shuttles[J]. Journal of Environmental Sciences, 2019, 78(4):109-117.
|
SHANG J G, ZONG M Z, YU Y, et al. Removal of Cr(Ⅵ) from water using nanoscale zerovalent iron particles supported on herb-residue biochar[J]. Journal of Environmental Management, 2017, 197:331-337.
|
LIU Y Y, SOHI S P, LIU S Y, et al. Adsorption and reductive degradation of Cr(Ⅵ) and tce by a simply synthesized zero valent iron magnetic biochar[J]. Journal of Environmental Management, 2019, 235:276-281.
|
WANG K, SUN Y B, TANG J C, et al. Aqueous Cr(Ⅵ) removal by a novel ball milled fe(0)-biochar composite:role of biochar electron transfer capacity under high pyrolysis temperature[J]. Chemosphere, 2020, 241:125044.
|
QIAN L B, ZHANG W Y, YAN J C, et al. Nanoscale zero-valent iron supported by biochars produced at different temperatures:synthesis mechanism and effect on Cr(Ⅵ) removal[J]. Environmental Pollution, 2017, 223:153-160.
|
ZHU Y E, LI H, ZHANG G X, et al. Removal of hexavalent chromium from aqueous solution by different surface-modified biochars:acid washing, nanoscale zero-valent iron and ferric iron loading[J]. Bioresource Technology, 2018, 261:142-150.
|
薛嵩, 钱林波, 晏井春, 等. 生物炭携载纳米零价铁对溶液中Cr(Ⅵ)的去除[J]. 环境工程学报, 2016, 10(6):2895-2901.
|
SHAHVERDI M, KOUHGARDI E, RAMAVANDI B. Characterization, kinetic, and isotherm data for Cr (Ⅵ) removal from aqueous solution by populus alba biochar modified by a cationic surfactant[J]. Data in Brief, 2016, 9:163-168.
|
SUN Y Q, YU I K M, TSANG D C W, et al. Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater[J]. Environment International, 2019, 124:521-532.
|
ZHU S S, HUANG X C, WANG D W, et al. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution:mechanisms and application potential[J]. Chemosphere, 2018, 207:50-59.
|
WU H H, WEI W X, XU C B, et al. Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr (Ⅵ)[J]. Ecotoxicology and Environmental Safety, 2020, 188:109902.
|
ZHANG R Y, ZHANG N Q, FANG Z R. In situ remediation of hexavalent chromium contaminated soil by cmc-stabilized nanoscale zero-valent iron composited with biochar[J]. Water Science & Technology, 2018, 77(5/6):1622-1631.
|
DIAO Z H, DU J J, JIANG D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron:Coexistence effect and mechanism[J]. Science of The Total Environment, 2018, 642:505-515.
|
ZHANG Y T, JIAO X Q, LIU N, et al. Enhanced removal of aqueous Cr (Ⅵ) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar[J]. Chemosphere, 2019, 245:125542.
|
WANG C, TAN H, LI H, et al. Mechanism study of chromium influenced soil remediated by an uptake-detoxification system using hyperaccumulator, resistant microbe consortium, and nano iron complex[J]. Environmental Pollution, 2019:113558.
|
刘书四. 改性生物炭对水稻土壤中镉和砷生物有效性以及根际微生态的影响.[D]. 广州:华南理工大学, 2017.
|
[1] | LI Zishan, HU Zhiwen, MEI Chuang, BAI Jinjing, ZENG Yan, XIAO Rongbo, WANG Peng, HUANG Fei. EFFECT OF COMBINATION OF RICE STRAW BIOCHAR AND BACILLUS CEREUS ON TRANSFORMATION OF SOIL HEAVY METAL SPECIATIONS AND MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 165-176. doi: 10.13205/j.hjgc.202410020 |
[2] | DING Ning, ZUO Shiwei, ZHANG Ruibo, WANG Zhaohui, LI Kewen, SHANG Ershun. SOLUBILIZER DESIGN FOR INTENSIFYING REMEDIATION OF SOIL WITH PETROLEUM HYDROCARBON POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 177-183. doi: 10.13205/j.hjgc.202401023 |
[3] | LU Ailing, ZHU Dongyun, ZHANG Hong, CAO Han, ZHANG Jing. EXPERIMENTAL STUDY ON REMEDIATION OF HEAVY METAL CONTAMINATED SOIL BY EICP COMBINED WITH BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 176-180. doi: 10.13205/j.hjgc.202308022 |
[4] | LUO Jingyang, LI Yi, LI Han, LI Yibing, ZHANG Qin, GE Ran, HUANG Wenxuan. RESEARCH PROGRESS ON BIOCHAR PRODUCTION DERIVED FROM MUNICIPAL SOLID WASTE AND ITS APPLICATION IN LANDFILLS TREATMENT AND SOIL IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 194-202. doi: 10.13205/j.hjgc.202203029 |
[5] | WANG Ziting, ZOU Jiawei, ZHOU Jiti, JIN Ruofei. PREPARATION OF GOETHITE-MODIFIED BIOCHAR AND ITS ADSORPTION CAPACITY ON Cr(Ⅵ)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 98-104. doi: 10.13205/j.hjgc.202211014 |
[6] | LI Geng, LI Haibo, LI Yinghua, CHEN Xi. SOLIDIFICATION/STABILIZATION OF As IN SOIL USING BIOCHAR LOADED WITH FERRIC MANGANESE BINARY OXIDES(FMBO)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 118-125. doi: 10.13205/j.hjgc.202203018 |
[7] | LV Zijuan, WANG Huawei, WU Yajing, SUN Yingjie, WANG Yanan. EFFECT OF PHASE TRANSFORMATION OF NANO-ZERO-VALENT IRON ON STABILIZATION AND POTENTIAL TOXICITY OF ARSENIC IN CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 24-31. doi: 10.13205/j.hjgc.202203005 |
[8] | LIAO Xiaoshu, ZHU Chengyu, CHOU Yue, ZHONG Min, ZHOU Bingling, ZHANG Qian. PERSULFATE ACTIVATION VIA NANOSCALE ZERO-VALENT IRON BASED BIOCHAR FOR OXYTETRACYCLINE DEGRADATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 118-124,95. doi: 10.13205/j.hjgc.202208016 |
[9] | XU Mei-li, CHEN Yong-guang, XIAO Rong-bo, MEI Chuang, DAI Wei-jie, WANG Peng, HUANG Fei. PROGRESS IN INFLUENTIAL MECHANISMS OF BIOCHAR ON AVAILABLE HEAVY METALS IN SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 165-172,226. doi: 10.13205/j.hjgc.202108023 |
[10] | DAI Li-ping, ZHU Han-quan, KE Xiong, CHEN Ri-yao, LIU Yao-xing. REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS SOLUTION USING BIPOLAR MEMBRANE ELECTRODIALYSIS TECHNIQUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 89-95. doi: 10.13205/j.hjgc.202111011 |
[11] | YANG Liu-yang, WANG Lei, CUI Chang-hao, LIU Mei-jia, LI Li, YAN Da-hai. TRANSFORMATION OF Cr CHEMICAL FORMS IN CEMENT KILNS CO-PROCESSING Cr CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 185-190. doi: 10.13205/j.hjgc.202110026 |
[12] | LI Pei-pei, ZHOU Yu-zhou, XIANG Yu-jia, ZHOU Yao-yu, ZHU Hong-mei, RONG Xiang-min. ADSORPTION PERFORMANCE OF P-ARSANILIC ACID IN AQUEOUS SOLUTION BY BIOCHAR SUPPORTED MANGANESE FERRATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 75-79,86. doi: 10.13205/j.hjgc.202001011 |
[13] | ZHAO Jie, HE Yu-hong, ZHANG Xiao-ming, LI Qi, YANG Wei-chun. EFFECT ON Cr(Ⅵ) ADSORPTION PERFORMANCE OF ACID-BASE MODIFIED BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 28-34. doi: 10.13205/j.hjgc.202006005 |
[14] | CHEN Jun-hua, ZHU Hong, SHAN Hui-feng, XING Yi-lan. PERFORMANCE OF SURFACTANTS ENHANCED AEROBIC BIOREMEDIATION OF PAHs CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 185-190. doi: 10.13205/j.hjgc.202005032 |
[15] | FANG Wei, JIANG Xian-ying, LI Jing-shi, LUO Qi-jin. ADSORPTION CAPABILITY OF GRAPHENE/SiO2-POLYPYRROLE COMPOSITES FOR Cr(Ⅵ) IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 53-59. doi: 10.13205/j.hjgc.202011009 |
[16] | XI Dong-dong, LI Xiao-min, XIONG Zi-xuan, JIANG Zhi, ZHANG Xiao-ming, YANG Wei-chun. SYNERGISTIC REMOVAL OF Cu, Co, Ni AND Cr FROM CONTAMINATED SOIL BY BIOCHAR-SUPPORTED NANOSCALE ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 58-66. doi: 10.13205/j.hjgc.202006010 |
[17] | WU Rui-ping. EFFECT OF PYROLYSIS TEMPERATURE ON BIOCHAR ENHANCED TREATMENT OF CADMIUM CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 241-246. doi: 10.13205/j.hjgc.202009039 |
[18] | CHEN Lin, PING Wei, YAN Bin, WU Yan, FU Chuan, HUANG Lian-qi, LIU Lu, YIN Mao-yun. ADSORPTION CHARACTERISTICS OF Cr(Ⅵ) BY SLUDGE BIOCHAR UNDER DIFFERENT PYROLYSIS TEMPERATURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 119-124. doi: 10.13205/j.hjgc.202008020 |
[20] | Xu Yanzhe Fang Zhanqiang, . ADVANCES ON REMEDIATION OF HEAVY METAL IN THE SOIL BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 156-159. doi: 10.13205/j.hjgc.201502035 |