Citation: | HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033 |
BARNHART J. Occurrences, uses, and properties of chromium[J]. Regulatory Toxicology and Pharmacology, 1997, 26(1 Pt 2):S3-7.
|
谭西顺. 危害人体健康的杀手:六价铬[J]. 劳动保护, 2003(1):61.
|
ELENI V, PETROS G J. Effects of chromium on activated sludge and on the performance of wastewater treatment plants:a review[J]. Water Research, 2012, 46(3):549-570.
|
STERN Z H, HAZEN R E. A study of chromium induced allergic contact dermatitis with 54 volunteers:implications for environmental risk assessment[J]. Occupational and Environmental Medicine, 1994, 51(6):549-570.
|
YOSHINAGA M, NINOMIYA H, HOSSAIN M, et al. A comprehensive study including monitoring, assessment of health effects and development of a remediation method for chromium pollution[J]. Chemosphere, 2018, 201:667-675.
|
ZHU Y F, YAN J W, XIA L, et al. Mechanisms of Cr(Ⅵ) reduction by Bacillus sp. CRB-1, a novel Cr(Ⅵ)-reducing bacterium isolated from tannery activated sludge[J]. Ecotoxicology and Environmental Safety, 2019, 186:109792.
|
BJØRKLUND G, AASETH J, SKALNY A V, et al. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency[J]. Journal of Trace Elements in Medicine and Biology, 2017, 41:41-53.
|
CHAE Y, AN Y J J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem:a review[J]. Environmental Pollution, 2018, 240:387-395.
|
SAHA B, ORVIG C J. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents[J]. Coordination Chemistry Reviews, 2010, 254(23):2959-2972.
|
徐天生, 欧杰, 马晨晨. 微生物还原Cr (Ⅵ)的机理研究进展[J]. 环境工程, 2015, 33(1):32-36.
|
许超, 邢轶兰, 刘鹏, 等. 多硫化钙修复Cr (Ⅵ)污染土壤的原理与应用[J]. 环境工程, 2018, 36(7):128-132.
|
张晓辉, 曹奇光, 谢国莉, 等. 不同还原剂处理实验室Cr (Ⅵ)废水研究[J]. 环境工程, 2014, 32(6):61-64.
|
祝方, 刘涛, 石建惠. 绿色合成纳米零价铁铜淋洗修复Cr (Ⅵ)污染土壤[J]. 环境工程, 2019, 37(4):172-176.
|
邹继颖, 刘辉. 生物吸附剂对重金属Cr (Ⅵ)吸附性能的研究[J]. 环境工程, 2014, 32(2):64-67.
|
JIANG D N, ZENG G M, HUANG D L, et al. Remediation of contaminated soils by enhanced nanoscale zero valent iron[J]. Environmental Research, 2018, 163:217-227.
|
ZHU F, LI L W, REN W J, et al. Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ) in the soil leachate by nZVI/Ni bimetal material[J]. Environmental Pollution, 2017, 227:444-450.
|
王侠, 王欣, 杜艳艳, 等. 改性纳米零价铁对稻田土壤As污染的修复效能[J]. 环境科学研究, 2017, 30(9):1406-1414.
|
NURMI J T, TRATNYEK P G, SARATHY V, et al. Characterization and properties of metallic iron nanoparticles:spectroscopy, electrochemistry, and kinetics[J]. Environmental Science Technology, 2005, 39(5):1221-1230.
|
梁震, 王焰新. 纳米级零价铁的制备及其用于污水处理的机理研究[J]. 环境保护, 2002(4):14-16.
|
邱心泓, 方战强. 修饰型纳米零价铁降解有机卤化物的研究[J]. 化学进展, 2010, 22(增刊1):291-297.
|
SUN Y P, LI X Q, ZHANG W X, et al. A method for the preparation of stable dispersion of zero-valent iron nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 308(1):60-66.
|
YIN H X, DONG Y Z. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles[J]. Water Research, 2007, 41(10):2101-2108.
|
范英宏. 生物炭原位覆盖对重金属铜的污染控制[J]. 环境工程, 2019, 37(6):155-159.
|
王向前, 胡学玉, 陈窈君, 等. 生物炭及改性生物炭对水环境中重金属的吸附固定作用[J].环境工程, 2016, 34(12):32-37.
|
许妍哲, 方战强. 生物炭修复土壤重金属的研究进展[J]. 环境工程, 2015, 33(2):156-159.
|
张晗, 林宁, 黄仁龙, 等. 不同生物质制备的生物炭对菲的吸附特性研究[J]. 环境工程, 2016, 34(10):166-171.
|
HU J J, GUO H C, WANG X H, et al. Utilization of the saccharification residue of rice straw in the preparation of biochar is a novel strategy for reducing CO2 emissions[J]. Science of The Total Environment, 2019, 650:1141-1148.
|
TAN Z X, LIU L Y, ZHANG L M, et al. Mechanistic study of the influence of pyrolysis conditions on potassium speciation in biochar "preparation-application" process[J]. Science of the Total Environment, 2017, 599/600:207-216.
|
ZHAO Y L, ZHANG R Y, LIU H B, et al. Green preparation of magnetic biochar for the effective accumulation of Pb(Ⅱ):performance and mechanism[J]. Chemical Engineering Journal, 2019,375:122011.
|
ZHONG Y, DENG Q, ZHANG P X, et al. Sulfonic acid functionalized hydrophobic mesoporous biochar:design, preparation and acid-catalytic properties[J]. Fuel, 2019, 240:270-277.
|
HU Z H, ZHANG L, ZHONG L L, et al. Preparation of an antibacterial chitosan-coated biochar-nanosilver composite for drinking water purification[J]. Carbohydrate Polymers, 2019, 219:290-297.
|
HUANG Z Y, WANG T L, SHEN M X, et al. Coagulation treatment of swine wastewater by the method of in-situ forming layered double hydroxides and sludge recycling for preparation of biochar composite catalyst[J]. Chemical Engineering Journal, 2019, 369:784-792.
|
孟梁, 侯静文, 郭琳, 等. 芦苇生物炭制备及其对Cu2+的吸附动力学[J]. 实验室研究与探索, 2015, 34(1):5-8.
|
许冬倩. 玉米秸秆生物炭制备及结构特性分析[J]. 广西植物, 2018, 38(9):19-29.
|
LI X, QIAN X R, AN X H, et al. Preparation of a novel composite comprising biochar skeleton and "chrysanthemum" g-C3N4 for enhanced visible light photocatalytic degradation of formaldehyde[J]. Applied Surface Science, 2019, 487:1262-1270.
|
YANG F, ZHANG S S, SUN Y Q, et al. A novel electrochemical modification combined with one-step pyrolysis for preparation of sustainable thorn-like iron-based biochar composites[J]. Bioresource Technology, 2019, 274:379-385.
|
王豆, 郭海艳, 李阳, 等. 蚓粪生物炭制备温度对甲基橙吸附性能的影响[J]. 环境工程学报, 2016,10(9):5172-5178.
|
ZHAI L M, CAI J Z M, LIU J, et al. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities[J]. Biology & Fertility of Soils, 2015, 51(1):113-122.
|
李明, 李忠佩, 刘明, 等. 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响[J]. 中国农业科学, 2015, 48(7):1361-1369.
|
FENG Y, LIU P, WANG Y X, et al. Distribution and speciation of iron in fe-modified biochars and its application in removal of As(Ⅴ), As(Ⅲ), Cr(Ⅵ), and Hg(Ⅱ):an x-ray absorption study[J]. Journal of Hazardous Materials, 2020, 384:121342.
|
KIM H B, KIM J G, KIM S H, et al. Consecutive reduction of Cr(Ⅵ) by Fe(Ⅱ) formed through photo-reaction of iron-dissolved organic matter originated from biochar[J]. Environ Pollut, 2019, 253:231-238.
|
LYU H H, ZHAO H, TANG J C, et al. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite[J]. Chemosphere, 2018, 194:360-369.
|
SU H J, FANG Z Q, TSANG P E, et al. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil[J]. Environmental Pollution, 2016, 214:94-100.
|
孙靖武, 刘宏菊, 孙也. 甘蔗渣负载纳米零价铁吸附剂去除水中Cr(Ⅵ)的研究[J]. 环境工程, 2016, 34(1):51-54.
|
FAN Z X, ZHANG Q, GAO B, et al. Removal of hexavalent chromium by biochar supported nzvi composite:batch and fixed-bed column evaluations, mechanisms, and secondary contamination prevention[J]. Chemosphere, 2019, 217:85-94.
|
魏雪. 生物炭包覆纳米零价铁去除水中硒的研究[D].长沙:湖南大学, 2016.
|
WANG S S, ZHOU Y X, GAO B, et al. The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size[J]. Chemosphere, 2017, 186:495-500.
|
DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(Ⅵ) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332:79-86.
|
MANDAL S, SARKAR B, BOLAN N, et al. Enhancement of chromate reduction in soils by surface modified biochar[J]. Journal of Environmental Management, 2016, 186(Part 2):277-284.
|
AROHAAK. Synthesis of them agneticbiochar composites for useasanadsor bent for there movalofpentachlorophenol from thee ffluent[J]. Bioresource Technology, 2014, 169:525-531.
|
LAWRINENKO M, WANG Z J, HORTON R, et al. Macroporous carbon supported zerovalent iron for remediation of trichloroethylene[J]. ACS Sustainable Chemistry, 2017, 5(2):1586-1593.
|
HUSSAIN I, LI M Y, ZHANG Y Q, et al. Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol[J]. Chemical Engineering Journal, 2017, 311:163-172.
|
SHANG J G, ZONG M Z, YU Y, et al. Removal of Cr(Ⅵ) from water using nanoscale zerovalent iron particles supported on herb-residue biochar[J]. Journal of Environmental Management, 2017, 197:331-337.
|
薛嵩, 钱林波, 晏井春, 等. 生物炭携载纳米零价铁对溶Cr(Ⅵ)的去除[J]. 环境工程学报, 2016, 10(6):2895-2901.
|
林琳, 万金忠, 李群, 等. 生物炭负载纳米零价铁材料的制备及还原降解性能[J]. 生态与农村环境学报, 2017, 33(7):660-664.
|
CHOI H, AL-ABED S R, AGARWAL S, et al. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs[J]. Chemistry of Materials, 2015, 20(11):3649-3655.
|
吴鸿伟, 冯启言, 杨虹, 等. 改性生物炭负载纳米零价铁去除水体中头孢噻肟[J]. 环境科学学报, 2017, 37(7):2691-2698.
|
邱月峰. 生物炭负载纳米铁镍双金属原位修复模拟地下水中三氯乙烷.[D]. 上海:华东理工大学, 2016.
|
薛嵩. 生物炭负载纳米零价铁对有机污染物的去除研究.[D]. 苏州:苏州科技学院, 2015.
|
邓小强. 绿茶提取液合成生物炭负载纳米零价铁修复六价铬污染的地下水.[D]. 太原:太原理工大学, 2018.
|
YAN J C, QIAN L B, GAO W G, et al. Enhanced fenton-like degradation of trichloroethylene by hydrogen peroxide activated with nanoscale zero valent iron loaded on biochar[J]. Scientific Reports, 2017, 7:43051.
|
YAN J C, HAN L, GAO W G, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175:269-274.
|
PONDER S M, DARAB J G, MALLOUK T, et al. Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solutions using supported, nanoscale zero-valent iron[J]. Journal of Molecular Liquids, 2000, 34(12):2564-2569.
|
ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology, 2014, 152:538-542.
|
ZHANG S, LYU H H, TANG J C, et al. A novel biochar supported cmc stabilized nano zero-valent iron composite for hexavalent chromium removal from water[J]. Chemosphere, 2019, 217:686-694.
|
WANG H X, ZHANG M L, LI H Y. Synthesis of nanoscale zerovalent iron (nZVI) supported on biochar for chromium remediation from Aqueous solution and soil[J]. International Journal of Environmental Research and Public Health, 2019, 16(22):4430.
|
QIAN L B, LIU S N, ZHANG W Y, et al. Enhanced reduction and adsorption of hexavalent chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron[J]. Journal of Colloid and Interface Science, 2019, 533:428-436.
|
YANG J H, MA T X, LI X Q, et al. Removal of heavy metals and metalloids by amino-modified biochar supporting nanoscale zero-valent iron[J]. Journal of Environmental Quality, 2018, 47(5):1196-1204.
|
REYHANITABARA A, ALIDOKHTA L. Application of stabilized Fe0 nanoparticles for remediation of Cr(Ⅵ)-spiked soil[J]. European Journal of Soil Science, 2012, 63(5):1-9.
|
SINGH R, MISRA V, SINGH R P. Rana pratap singh.Remediation of Cr(Ⅵ) contaminated soil by zero-valent iron nanoparticles entrapped in calcium alginate beads[J]. International Conference on Environmental Science and Development, 2011:162-164.
|
ZHIHUI A I, CHENG Y, ZHANG L, et al. Efficient Removal of Cr(Ⅵ) from Aqueous Solution with Fe@Fe2O3 Core-Shell Nanowires[J]. Environmental ence & Technology, 2008, 42(18):6955-6960.
|
EL-SHAZLY A H, MUBARAK A A, KONSOWA A H. Hexavalent chromium reduction using a fixed bed of scrap bearing iron spheres[J]. Desalination, 2005, 185(1/2/3):307-316.
|
XU J W, YIN Y G, TAN Z Q, et al. Enhanced removal of Cr(Ⅵ) by biochar with fe as electron shuttles[J]. Journal of Environmental Sciences, 2019, 78(4):109-117.
|
SHANG J G, ZONG M Z, YU Y, et al. Removal of Cr(Ⅵ) from water using nanoscale zerovalent iron particles supported on herb-residue biochar[J]. Journal of Environmental Management, 2017, 197:331-337.
|
LIU Y Y, SOHI S P, LIU S Y, et al. Adsorption and reductive degradation of Cr(Ⅵ) and tce by a simply synthesized zero valent iron magnetic biochar[J]. Journal of Environmental Management, 2019, 235:276-281.
|
WANG K, SUN Y B, TANG J C, et al. Aqueous Cr(Ⅵ) removal by a novel ball milled fe(0)-biochar composite:role of biochar electron transfer capacity under high pyrolysis temperature[J]. Chemosphere, 2020, 241:125044.
|
QIAN L B, ZHANG W Y, YAN J C, et al. Nanoscale zero-valent iron supported by biochars produced at different temperatures:synthesis mechanism and effect on Cr(Ⅵ) removal[J]. Environmental Pollution, 2017, 223:153-160.
|
ZHU Y E, LI H, ZHANG G X, et al. Removal of hexavalent chromium from aqueous solution by different surface-modified biochars:acid washing, nanoscale zero-valent iron and ferric iron loading[J]. Bioresource Technology, 2018, 261:142-150.
|
薛嵩, 钱林波, 晏井春, 等. 生物炭携载纳米零价铁对溶液中Cr(Ⅵ)的去除[J]. 环境工程学报, 2016, 10(6):2895-2901.
|
SHAHVERDI M, KOUHGARDI E, RAMAVANDI B. Characterization, kinetic, and isotherm data for Cr (Ⅵ) removal from aqueous solution by populus alba biochar modified by a cationic surfactant[J]. Data in Brief, 2016, 9:163-168.
|
SUN Y Q, YU I K M, TSANG D C W, et al. Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater[J]. Environment International, 2019, 124:521-532.
|
ZHU S S, HUANG X C, WANG D W, et al. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution:mechanisms and application potential[J]. Chemosphere, 2018, 207:50-59.
|
WU H H, WEI W X, XU C B, et al. Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr (Ⅵ)[J]. Ecotoxicology and Environmental Safety, 2020, 188:109902.
|
ZHANG R Y, ZHANG N Q, FANG Z R. In situ remediation of hexavalent chromium contaminated soil by cmc-stabilized nanoscale zero-valent iron composited with biochar[J]. Water Science & Technology, 2018, 77(5/6):1622-1631.
|
DIAO Z H, DU J J, JIANG D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron:Coexistence effect and mechanism[J]. Science of The Total Environment, 2018, 642:505-515.
|
ZHANG Y T, JIAO X Q, LIU N, et al. Enhanced removal of aqueous Cr (Ⅵ) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar[J]. Chemosphere, 2019, 245:125542.
|
WANG C, TAN H, LI H, et al. Mechanism study of chromium influenced soil remediated by an uptake-detoxification system using hyperaccumulator, resistant microbe consortium, and nano iron complex[J]. Environmental Pollution, 2019:113558.
|
刘书四. 改性生物炭对水稻土壤中镉和砷生物有效性以及根际微生态的影响.[D]. 广州:华南理工大学, 2017.
|