Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 38 Issue 11
Apr.  2021
Turn off MathJax
Article Contents
XU Jin-xin, WANG Chu, YAO Dong-jing, DUN Jia-yao, HUANG Min-hui, SUN He-chen. SPECTRAL CHARACTERISTICS OF SOIL DISSOLVED ORGANIC MATTERS IN CHONGMING DONGTAN WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 218-225. doi: 10.13205/j.hjgc.202011035
Citation: XU Jin-xin, WANG Chu, YAO Dong-jing, DUN Jia-yao, HUANG Min-hui, SUN He-chen. SPECTRAL CHARACTERISTICS OF SOIL DISSOLVED ORGANIC MATTERS IN CHONGMING DONGTAN WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 218-225. doi: 10.13205/j.hjgc.202011035

SPECTRAL CHARACTERISTICS OF SOIL DISSOLVED ORGANIC MATTERS IN CHONGMING DONGTAN WETLAND

doi: 10.13205/j.hjgc.202011035
  • Received Date: 2019-10-17
    Available Online: 2021-04-23
  • Publish Date: 2021-04-23
  • In order to elucidate the composition, distribution and source characteristics of soil dissolved organic matter (DOM) in coastal wetland, ultraviolet-visible absorption spectrum and excitation-emission matrix spectroscopy combined with parallel factor analysis (PARAFAC) were applied to investigate the DOM in the surface soil of Dongtan in Chongming District, Shanghai. The results indicated that the mean value of DOM absorption coefficient (a(355)) was (13.72±9.47) m-1, which showed a trend of decreasing from high tide beach to low tide beach. The mean value of the spectral slope (S275-295) was (15.22±2.07) μm-1 and it reflected that the soil DOM had a higher molecular weight in the south of the wetland, which was greatly affected by macromolecular organic matter. Three fluorescence components were identified by PARAFAC, including protein-like component named FC1, land-sourced humic-like component named FC2, and authigenic-source humic-like component named FC3. The contribution rates of FC1, FC2 and FC3 to total fluorescence intensity were 40.70%, 23.04% and 36.26%, respectively. Spatially, the peak values of the intensity of three components were observed in the Spartina alterniflora and Phragmites australis wetland, and gradually decreased from the north to the south. Fluorescence index (FI), biogenic index (BIX) and humification index (HIX) showed that the soil DOM in Dongtan was mainly derived from endogenous sources. The fluorescence components were significantly positively correlated with each other, and each component was closely related to the migration and transformation of carbon and nitrogen. Chromophores and fluorophores of DOM shared a common source.
  • loading
  • LEENHEER J A, CROUÉ J P. Peer reviewed:characterizing aquatic dissolved organic matter[J]. Environmental Science and Technology, 2003, 37(1):18A-26A.
    吴丰昌, 王立英, 黎文, 等. 天然有机质及其在地表环境中的重要性[J]. 湖泊科学, 2008, 20(1):1-12.
    王美丽, 李军, 朱兆洲, 等. 土壤溶解性有机质的研究进展[J]. 矿物岩石地球化学通报, 2010, 29(3):304-310

    ,316.
    郭旭晶, 席北斗, 何小松, 等. 乌梁素海周边土壤溶解性有机质荧光特性及其与Cu(Ⅱ)的配位研究[J].环境化学, 2010, 29(6):1121-1126.
    FARRINGTON J. Overview and key recommendations:marine organic geochemistry workshop, January 1990[J]. Marine Chemistry, 1992, 39(1/2/3):5-9.
    HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3):955-969.
    ARTINGER R, BUCKAU G, GEYER S, et al. Characterization of groundwater humic substances:influence of sedimentary organic carbon[J]. Applied Geochemistry, 2000, 15(1):97-116.
    COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4):325-346.
    MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1):38-48.
    STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis:a tutorial[J]. Limnology and Oceanography:Methods, 2008, 6(11):572-579.
    李璐璐, 江韬, 卢松, 等. 利用紫外-可见吸收光谱估算三峡库区消落带水体、土壤和沉积物溶解性有机质(DOM)浓度[J]. 环境科学, 2014, 35(9):3408-3416.
    LIU L, SONG C Y, YAN Z G, et al. Characterizing the release of different composition of dissolved organic matter in soil under acid rain leaching using three-dimensional excitation-emission matrix spectroscopy[J]. Chemosphere, 2009, 77(1):15-21.
    冯可心, 李永峰, 姜霞,等. 丹江口水库表层沉积物有色可溶性有机物空间分布特征及其来源分析[J]. 环境化学, 2016, 35(2):373-382.
    FU P Q, WU F Q, LIU C Q, et al. Spectroscopic characterization and molecular weight distribution of dissolved organic matter in sediment porewaters from Lake Erhai, Southwest China[J]. Biogeochemistry, 2006, 81(2):179-189.
    白军红, 王庆改. 中国湿地生态威胁及其对策[J]. 水土保持研究, 2003, 10(4):247-249.
    訾园园, 孔范龙, 郗敏, 等. 胶州湾滨海湿地土壤溶解性有机质的三维荧光特性[J]. 应用生态学报, 2016, 27(12):3871-3881.
    王江涛, 仲启铖, 欧强, 等. 崇明东滩滨海围垦湿地生长季CO2通量特征[J]. 长江流域资源与环境, 2015, 24(3):416-425.
    曹浩冰, 葛振鸣, 祝振昌, 等. 崇明东滩盐沼植被扩散格局及其形成机制[J]. 生态学报, 2014, 34(14):3944-3952.
    张天雨, 葛振鸣, 张利权, 等. 崇明东滩湿地植被类型和沉积特征对土壤碳、氮分布的影响[J]. 环境科学学报, 2015, 35(3):836-843.
    ROCHELLE-Newall E J, FISHER T R. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay[J]. Marine Chemistry, 2002, 77(1):23-41.
    CORY R M, MCKNIGHT D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in DOM[J]. Environmental Science and Technology, 2005, 39(21):8142-8149.
    HUGUET A, VACHER L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009(40):706-719.
    ZSOLNAY A, BAIGAR E, Jimenez M, et al. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying[J]. Chemosphere, 1999, 38(1):45-50.
    SPENCER R G M, BUTLER K D, Aiken G R. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA[J]. Journal of Geophysical Research Biogeosciences, 2015, 117:G03001.
    陈小锋, 揣小明, 刘涛, 等. 江苏省西部湖泊溶解性有机物光谱学特征和来源解析[J]. 湖泊科学, 2012, 24(2):259-266.
    郭卫东, 杨丽阳, 王福利, 等. 水库型河流溶解有机物三维荧光光谱的平行因子分析[J]. 光谱学与光谱分析, 2011, 31(2):427-430.
    李磊, 刘明, 李燕丽, 等. 浮水植物处理对猪场污水中可溶性有机物组成的影响[J]. 环境化学, 2016, 35(5):865-874.
    陈俊伊, 王书航, 姜霞, 等. 蠡湖表层沉积物荧光溶解性有机质(FDOM)荧光光谱特征[J]. 环境科学, 2017, 38(1):70-77.
    STEDMON C A, MARKAGER S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis[J]. Limnology and Oceanography, 2005, 50(2):686-697.
    江俊武, 李帅东, 沈胤胤, 等. 夏季太湖CDOM光学特性空间差异及其来源解析[J]. 环境科学研究, 2017, 30(7):1020-1030.
    傅平青, 刘丛强, 吴丰昌. 溶解有机质的三维荧光光谱特征研究[J]. 光谱学与光谱分析, 2005, 25(12):2024-2028.
    LAMBERT T, TEODORU C R, NYONI F C, et al. Along-stream transport and transformation of dissolved organic matter in a, large tropical river[J]. Biogeosciences, 2016, 13(9):2727-2741.
    布乃顺, 杨骁, 郭昊, 等. 互花米草入侵对长江河口湿地CH4排放的影响[J]. 中国环境科学, 2018, 38(10):3949-3958.
    章振亚, 丁陈利, 肖明. 崇明东滩湿地不同潮汐带入侵植物互花米草根际细菌的多样性[J]. 生态学报, 2012, 32(21):6636-6646.
    王红丽, 肖春玲, 李朝君, 等.崇明东滩湿地土壤有机碳空间分异特征及影响因素[J]. 农业环境科学学报, 2009, 28(7):1522-1528.
    高洁,江韬,李璐璐,等. 三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征[J].环境科学,2015,36(1):151-162.
    YAMASHITA Y. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Marine Chemistry, 2003, 82(3):255-271.
    彭志刚, 刘晓庆. 不同深度土壤中水溶性有机物荧光光谱特征研究[J]. 现代农业科技, 2011(5):272-273.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (240) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return