Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Hao, WANG Hao-nan, REN Fei-peng, PENG Rui-chao. APPLICATION OF MANGANESE DIOXIDE NANOSPHERES IN ELECTRO-FENTON REACTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 26-31. doi: 10.13205/j.hjgc.202012005
Citation: LI Hao, WANG Hao-nan, REN Fei-peng, PENG Rui-chao. APPLICATION OF MANGANESE DIOXIDE NANOSPHERES IN ELECTRO-FENTON REACTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 26-31. doi: 10.13205/j.hjgc.202012005

APPLICATION OF MANGANESE DIOXIDE NANOSPHERES IN ELECTRO-FENTON REACTION

doi: 10.13205/j.hjgc.202012005
  • Received Date: 2019-08-28
    Available Online: 2021-04-23
  • In this work, a nano MnO2 microsphere with high large specific surface area has been successfully prepared by a facile hydrothermal process. Then it was used to replace Fe2+ in Fenton reagent. Methylene blue (MB) was degraded by electro-like Fenton reaction. The experimental results showed that when the initial concentration of methylene blue solution was 30 mg/L, the optimal degradation condition was voltage of 5.3 V, 80 mg/L MnO2, H2O2 solution content of 20.4 g/L, pH of 4. Then the degradation rate of MB reached 94.08% within 40 min.The changes of MnO2 before and after the reaction were discussed and the reaction mechanism was proposed.This study could provide theoretical basis and guidance for electro-Fenton technology in practical application.
  • HAMMAMI S, BELLAKHAL N, OTURAN N, et al. Degradation of acid orange 7 by electrochemically generated·OH radicals in acidic aqueous medium using a boron-doped diamond or platinum anode:a mechanistic study[J]. Chemosphere,2008,73(5):678-684.
    江野立,李爱民. 电-Fenton法处理水体中有机污染物的研究现状与进展[J].环境工程,2012,30(增刊2):5-9.
    彭瑞超, 于萍, 罗运柏. 电-Fenton装置的优化与焦化废水的深度处理[J]. 环境工程, 2014,32(5):10-13.
    陈立群, 张永刚. MnO2催化Fenton试剂降解苯酚废水[J]. 环境工程学报, 2012,6(11):4047-4052.
    ZHOU D N, CHEN L, ZHANG C B, et al. A novel photochemical system of ferrous sulfite complex:kinetics and mechanisms of rapid decolorization of acid orange 7 in aqueous solutions[J]. Water Research, 2014, 57:87-95.
    XU Y, LIN H, LI Y K, et al. The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis[J]. Science of the Total Environment, 2017, 609:644-654.
    SAPUTRA E, MUHAMMAD S, SUN H Q, et al. Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation[J]. Environmental Science & Technology, 2013, 47(11):5882-5887.
    GHAUCH A, MUTHANNA T A, KIBBI N, et al. Methylene blue discoloration by heated persulfate in aqueous solution[J]. Chemical Engineering Journal, 2012,213:259-271.
    ZHAO G X,LI J X, REN X M, et al. Highly active MnO2 nanosheet synthesis from graphene oxide templates and their application in efficient oxidative degradation of methylene blue[J]. RSC Advance, 2013, 31(3):12909-12914.
    CHEN X Y, CHEN J W, QIAO X L, et al. Performance of nano-Co3O4/peroxymonosulfate system:kinetics and mechanism study using acid orange 7 as a model compound[J]. Applied Catalysis B:Environmental, 2008, 80(1/2):116-121.
    刘士姮,汪世龙,孙晓宇,等.酸性橙7降解的微观反应机理及动力学研究[J].光谱学与光谱分析, 2005,25(5):776-779.
    CAI C, ZHANG Z Y, ZHANG H. Electro-assisted heterogeneous activation of persulfate by Fe/SBA-15 for the degradation of orange Ⅱ[J]. Journal of Hazardous Materials, 2016, 313(5):209-218.
    LIN H, ZHANG H, HOU L W. Degradation of C.I. acid orange 7 in aqueous solution by a novel electro/Fe3O4/PDS process[J]. Journal of Hazardous Materials, 2014, 276(15):182-191.
    PENG R C, ZHENG Y, GUI L, et al. Template free synthesize mesoporous manganese dioxides for water treatment[J]. Journal of Alloys and Compounds, 2018, 753(15):130-137.
    REMUCAL C, GINDERVOGEL M. A critical review of the reactivity of manganese oxides with organic contaminants[J]. Environmental Science Processes & Impacts, 2014, 16(6):1247-1266.
    LI F B, LIU C S, LIANG C H, et al. The oxidative degradation of 2-mercaptobenzothiazole at the interface of β-MnO2 and water[J]. Journal of Hazardous Materials, 2008, 154(1/2/3):1098-1105.
    GAO J, HEDMAN C, LIU C, et al. Transformation of sulfamethazine by manganese oxide in aqueous solution[J]. Environmental Science & Technology, 2012, 46(5):2642-2651.
    KLAUSEN J, HADERLEIN S, SCHWARZENBACH R. Oxidation of substituted anilines by aqueous MnO2:effect of co-solutes on initial and quasi-steady-state kinetics[J]. Environmental Science & Technology, 1997, 31(9):2642-2649.
    ZHANG H C, CHEN W R, HUANG C H. Kinetic modeling of oxidation of antibacterial agents by manganese oxide[J]. Environmental Science & Technology, 2008, 42(15):5548-5554.
    PENG R C, LUO Y B, YU P. Coke plant wastewater posttreatment by fenton and electro-fenton processes[J].Enviromental Engineering Science, 2017,34(2):89-96.
    YU P, ZHANG X, WANG D, et al. Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors[J]. Crystal Growth & Design, 2009, 9(1):528-533.
  • Relative Articles

    [1]WAN Jiguo, XU Li, WANG Yu. Effect of Ca/P ratio on catalytic oxidation of dichloromethane over Ru/hydroxyapatite catalysts[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 175-184. doi: 10.13205/j.hjgc.202501019
    [2]SHI Jianqiang, WANG Bing, CHEN Jianjun, WANG Jiancheng, LI Junhua. RESEARCH PROGRESS OF MERCURY OXIDATION CATALYSTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 229-239. doi: 10.13205/j.hjgc.202409022
    [3]XU Zhilong, YU Naichuan, SUN Huijie, WANG Qunhui. MECHANISM AND TOXICITY ANALYSIS OF SULFAMETHAZINE DEGRADATION BY ELECTRO-FENTON SYSTEM USING NATURAL TOURMALINE AS THE CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 89-95. doi: 10.13205/j.hjgc.202309011
    [4]ZHAO Puzhen, LIU Chu, HUANG Qianlin, LÜ Lu. FABRICATION OF NICKEL FOAM BASED MnO2 MONOLITHIC CATALYSTS AND ITS APPLICATION IN CATALYTIC ELIMINATION OF TOLUENE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 71-78,115. doi: 10.13205/j.hjgc.202304010
    [5]LIANG Baorui, WANG Bin, MA Zhiliang, LIU Junjie, XU Shuiyang, WEI Zhenqiang, ZHANG Hui. SIMULTANEOUS CATALYTIC PURIFICATION OF NOx AND O-DCB WITH SUPPORTED Mn HYDROTALCITE-LIKE STRUCTURE CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 8-13,126. doi: 10.13205/j.hjgc.202202002
    [6]ZHANG Peng, XU Ruixia, LIU Shuyi, ZHAO Ling. PREPARATION OF CuO/ZnO CATALYST DERIVED FROM MOFs AND PHOTOCATALYTIC PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 35-42. doi: 10.13205/j.hjgc.202204006
    [7]RU Wei, ZHANG Jian-bin, QIAN Wei-jie, LI Shi-wei, ZHENG Wei, LI Ying. APPLICATION OF MBR-FENTON CATALYTIC OXIDATION COMBINED PROCESS IN ADVANCED TREATMENT OF PRINTING AND DYEING WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 149-153,158. doi: 10.13205/j.hjgc.202111019
    [8]FAN Hao, SHEN Zhen-xing, LU Jia-qi, CHANG Tian, HUANG Yu. THE ACTIVE SITES AND PERFORMANCE OF Mn1Cex/HZSM-5 CATALYST FOR FORMALDEHYDE REMOVAL AT ROOM TEMPERATURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 99-105. doi: 10.13205/j.hjgc.202106015
    [9]LI Juan-juan, ZHANG Meng, CAI Song-cai, YU En-qi, CHEN Jing, JIA Hong-peng. LIGHT-DRIVEN THERMOCATALYSIS/PHOTO-THERMOCATALYSIS OF VOCs: RECENT ADVANCES AND FUTURE PERSPECTIVES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 13-20. doi: 10.13205/j.hjgc.202001002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.0 %FULLTEXT: 9.0 %META: 90.0 %META: 90.0 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.4 %其他: 10.4 %China: 1.0 %China: 1.0 %Netherlands: 0.3 %Netherlands: 0.3 %上海: 0.7 %上海: 0.7 %东莞: 1.4 %东莞: 1.4 %临汾: 0.3 %临汾: 0.3 %临沂: 0.3 %临沂: 0.3 %丽水: 0.3 %丽水: 0.3 %北京: 3.5 %北京: 3.5 %十堰: 0.7 %十堰: 0.7 %南京: 1.4 %南京: 1.4 %南昌: 0.3 %南昌: 0.3 %南通: 0.7 %南通: 0.7 %台州: 0.3 %台州: 0.3 %合肥: 0.7 %合肥: 0.7 %周口: 0.7 %周口: 0.7 %嘉兴: 0.3 %嘉兴: 0.3 %图尔库: 0.7 %图尔库: 0.7 %大连: 1.0 %大连: 1.0 %天津: 1.7 %天津: 1.7 %太原: 0.3 %太原: 0.3 %常德: 0.3 %常德: 0.3 %广州: 2.4 %广州: 2.4 %张家口: 2.1 %张家口: 2.1 %德州: 0.3 %德州: 0.3 %成都: 2.4 %成都: 2.4 %扬州: 0.3 %扬州: 0.3 %拉贾斯坦邦: 0.3 %拉贾斯坦邦: 0.3 %新乡: 0.3 %新乡: 0.3 %昆明: 1.4 %昆明: 1.4 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 2.8 %杭州: 2.8 %桂林: 1.4 %桂林: 1.4 %武汉: 1.4 %武汉: 1.4 %济南: 0.7 %济南: 0.7 %济源: 0.7 %济源: 0.7 %海口: 0.7 %海口: 0.7 %温州: 0.3 %温州: 0.3 %湖州: 2.1 %湖州: 2.1 %湘潭: 0.3 %湘潭: 0.3 %漯河: 1.0 %漯河: 1.0 %芒廷维尤: 19.0 %芒廷维尤: 19.0 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.7 %苏州: 0.7 %荆州: 0.3 %荆州: 0.3 %衢州: 1.0 %衢州: 1.0 %西宁: 16.3 %西宁: 16.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 3.5 %运城: 3.5 %连云港: 0.3 %连云港: 0.3 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 4.2 %郑州: 4.2 %重庆: 0.7 %重庆: 0.7 %长沙: 0.3 %长沙: 0.3 %长治: 0.3 %长治: 0.3 %阳泉: 0.3 %阳泉: 0.3 %雅安: 0.3 %雅安: 0.3 %青岛: 1.4 %青岛: 1.4 %黄石: 0.3 %黄石: 0.3 %其他ChinaNetherlands上海东莞临汾临沂丽水北京十堰南京南昌南通台州合肥周口嘉兴图尔库大连天津太原常德广州张家口德州成都扬州拉贾斯坦邦新乡昆明晋城朝阳杭州桂林武汉济南济源海口温州湖州湘潭漯河芒廷维尤芝加哥苏州荆州衢州西宁贵阳运城连云港遵义邯郸郑州重庆长沙长治阳泉雅安青岛黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (259) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return