Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DAI Liang, ZHAO Wei-fan, ZHANG Hong-wei, HAN Tao, ZHANG Kang. RESEARCH PROGRESS ON ADSORPTION OF HEAVY METALS BY SEWAGE SLUDGE-BASED BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 70-77. doi: 10.13205/j.hjgc.202012013
Citation: BAO Yi, SONG Jia-jun, YIN Fang-fang, ZHANG Yuan-ke, TIAN Wen-li, LI Xin-hui, YANG Chen-qi, LIU Wen-ru, SHEN Yao-liang. EFFECTS OF LOW TEMPERATURE ON PARTIAL NITRIFICATION GRANULAR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 32-37,44. doi: 10.13205/j.hjgc.202012006

EFFECTS OF LOW TEMPERATURE ON PARTIAL NITRIFICATION GRANULAR SYSTEM

doi: 10.13205/j.hjgc.202012006
  • Received Date: 2020-02-28
    Available Online: 2021-04-23
  • The long-and short-term effects of temperature change on partial nitrification granules was investigated. The results showed that nitrite accumulation efficiency and ammonium removal loading rates of the granular reactor were stably maintained at above 95% and 0.18~0.25 kg/(m3·L), when treating the influent of (35.8±5.2) mg/L with hydraulic retention time of 2.0 h at 7~17 ℃. The low DO/NH4+-N ratio (<0.25) caused the efficient nitrite oxidizing bacteria (NOB) repression in the granular reactor. Though the lowering temperature caused the decrease of specific ammonia oxidation rates (SAOR) of partial nitrification granules from (237±14) g/(g·d) (at 17 ℃) to (93±11) g/(g·d) (at 8 ℃), the active AOB ratio (the ratio between actual SAOR and maximal SAOR of granules) increased from 48% to 85%. Batch tests results indicated that the temperature coefficient (θ) and activation energy (Ea) of the ammonia oxidizing bacteria (AOB) living in the granules was around 1.042~1.063, 29.7~41.9 kJ/mol respectively from 7.1 ℃ to 28 ℃, which were lower than that reported in flocculent sludge systems. These results suggested that the AOB living in the granules were less influenced by low temperatures than that living in the flocs. The research could provide practical support for the development of high-rate nitritation technology for municipal wastewater treatment with granular sludge.
  • WINKLER M K, STRAKA L. New directions in biological nitrogen removal and recovery from wastewater[J]. Current Opinion in Biotechnology, 2019, 57:50-55.
    PENG Y Z, ZHU G B. Biological nitrogen removal with nitrification and denitrification via nitrite pathway[J]. Applied Microbiology and Biotechnology, 2006, 73(1):15-26.
    ZHANG M, WU S, ZUO Z Q, et al. Predictions of the influent and operational conditions for partial nitritation with a model incorporating pH dynamics[J]. Environmental Science Technology, 2018, 52(11):6457-6465.
    彭永臻, 李璐凯, 李夕耀, 等. 不同pH值及碱性物质对短程硝化的影响[J].北京工业大学学报,2017,43(10):1554-1562.
    WANG Q L, LIU Y, JIANG G M, et al. Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway[J]. Water Research,2014, 55:245-255.
    WANG Q L, DUAN H R,WEI W, et al. Achieving stable mainstream nitrogen removal via the nitrite pathway by sludge treatment using free ammonia[J]. Environmental Science Technology, 2017, 51(17):9800-9807.
    REGMI P, MILLER M W, HOLGATE B, et al. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation[J]. Water Research,2014, 57:162-171.
    付昆明,廖敏辉,任奕, 等. 污水短程硝化影响因素的对比分析[J]. 中国给水排水,2019,35(4):24-29.
    WU J, HE C D, VAN LOOSDRECHT M C M, et al. Selection of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) based on conversion rates[J]. Chemical Engineering Journal, 2016, 304:953-961.
    CAO Y S, VAN LOOSDRECHT M C M, DAIGGER G T. Mainstream partial nitritation-anammox in municipal wastewater treatment:status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4):1365-1383.
    LIU W R, YANG D H, SHEN Y L, et al. Two-stage partial nitritation-anammox process for high-rate mainstream deammonification[J]. Applied Microbiology and Biotechnology, 2018, 102(18):8079-8091.
    刘文如, 杨殿海, 沈耀良, 等. 主流条件下两级式PN-ANAMMOX工艺的高效能脱氮过程[J]. 环境科学, 2018, 39(12):5580-5586.
    赵青,卞伟, 李军, 等. DO/NH4+-N调控实现MBBR工艺生活污水短程硝化[J]. 中国环境科学,2017,37(12):4511-4517.
    BARTROLI A, PEREZ J, CARRERA J. Applying ratio control in a continuous granular reactor to achieve full nitritation under stable operating conditions[J]. Environmental Science Technology, 2010, 44(23):8930-8935.
    ISANTA E, REINO C, CARRERA J, et al. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor[J]. Water Research, 2015, 80:149-158.
    REINO C, SUAREZ-OJEDA M, PEREZ J, et al. Kinetic and microbiological characterization of aerobic granules performing partial nitritation of a low-strength wastewater at 10℃[J]. Water Research, 2016, 101:147-156.
    HWANG J H, OLESZKIEWICZ J A. Effect of cold-temperature shock on nitrification[J]. Water Environment Research, 2007, 79(9):964-968.
    GUO J H, PENG Y Z, HUANG H J, et al. Short-and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater[J]. Journal of Hazardous Materials, 2010, 179(1/2/3):471-479.
    DEGRAAF A A V, DEBRUIJN P, ROBERTSON L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology-Uk, 1996, 142, 2187-2196.
    国家环境保护总局, 水和废水监测编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002.
    KIM J H, GUO X J, PARK H S. Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation[J]. Process Biochemistry, 2008, 43(2):154-160.
    WANG J L, YANG N. Partial nitrification under limited dissolved oxygen conditions[J]. Process Biochemistry, 2004, 39(10): 1223-1229.
    HEAD M A, OLESZKIEWICZ J A. Bioaugmentation for nitrification at cold temperatures[J]. Water Research, 2004, 38(3): 523-530.
    MOGENS H, WILLI G, TAKASHI M, et al. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3(Scientific and Technical Report No.9)[M]. London: IWA Publishing, 2000.
    SOZEN S, ORHON D, SAN H A. A new approach for the evaluation of the maximum specific growth rate in nitrification[J]. Water Research, 1996, 30(7): 1661-1669.
    OLESZKIEWICZ J A, BERQUIST S A. Low temperature nitrogen removal in sequencing batch reactors[J]. Water Research, 1988, 22(9): 1163-1171.
    SALVETTI R, AZZELLINO A, CANZIANI R, et al. Effects of temperature on tertiary nitrification in moving-bed biofilm reactors[J]. Water Research, 2006, 40(15): 2981-2993.
    BENYAHIA F, POLOMARKAKI R. Mass transfer and kinetic studies under no cell growth conditions in nitrification using alginate gel immobilized Nitrosomonas[J]. Process Biochemistry, 2005, 40(3/4): 1251-1262.
    PAINTER H A, LOVELESS J E. Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process[J]. Water Research, 1983, 17(3): 237-248.
    HALL E R, MURPHY K L. Sludge age and substrate effects on nitrification kinetics[J]. Journal Water Pollution Control Federation, 1985, 57(5): 413-418.
    RANDALL C W, BENEFIELD L D, BUTH D. The effects of temperature on the biochemical reaction rates of the activated sludge process[J]. Water Science and Technology, 1982, 14(1/2): 413-430.
    LIU W R, CHEN W J, YANG D H, et al. Functional and compositional characteristics of nitrifiers reveal the failure of achieving mainstream nitritation under limited oxygen or ammonia conditions[J]. Bioresource Technology, 2019, 275: 272-279.
    LIU W R, YANG D H. Evaluating the feasibility of ratio control strategy for achieving partial nitritation in a continuous floccular sludge reactor: experimental demonstration[J]. Bioresource Technology, 2017, 224: 94-100.
  • Relative Articles

    [1]LENG Jiewen, SHI Ke, WANG Xuejing, KOU Wei, FU Xiaowei, SUN Zhaonan. ADSORPTION OF TETRACYCLINE ON BIOCHAR PREPARED FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 75-82. doi: 10.13205/j.hjgc.202405010
    [2]WANG Xingming, WANG Ying, FAN Tingyu, CHU Zhaoxia, DONG Zhongbing, DONG Peng. PATHWAYS OF HEAVY METALS ABSORPTION BY EARTHWORMS IN SLUDGE VERMI COMPOSTING ENHANCED BY RICE HUSK CHARCOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 147-154. doi: 10.13205/j.hjgc.202410018
    [3]LIU Wei, XU Zhiqiang, LI Hongxing, CAO Chenjie, DONG Wen, FENG Minquan, QI Mingyang, LI Jiangbo, KOU Xiaomei, SHAO Tian. IMMOBILIZATION EFFECT OF SLUDGE BIOCHAR ON HEAVY METALS IN CONTAMINATED DREDGED SEDIMENT IN RIVER CHANNELS IN MINING REGION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 32-39. doi: 10.13205/j.hjgc.202402004
    [4]LU Ailing, ZHU Dongyun, ZHANG Hong, CAO Han, ZHANG Jing. EXPERIMENTAL STUDY ON REMEDIATION OF HEAVY METAL CONTAMINATED SOIL BY EICP COMBINED WITH BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 176-180. doi: 10.13205/j.hjgc.202308022
    [5]JIANG Yuzhu, HUI Helong, LIU Hongyi, DING Guangchao, LU Wenyi, LI Songgeng. STUDY ON THE EFFECTIVENESS OF TEXTILE DYING SLUDGE BIOCHAR IN TREATING REFRACTORY ORGANIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 32-39. doi: 10.13205/j.hjgc.202210005
    [6]CAO Xiuqin, LIU Feng, CHAI Lianlian, ZHU Kaijin, TAN Junhua. RESEARCH PROGRESS ON PREPARATION OF SLUDGE BASED BIOCHAR AND ITS EFFECT ON SOIL ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 203-211. doi: 10.13205/j.hjgc.202203030
    [7]LI Wei, AN Xian-jin. DESORPTION BEHAVIOR OF PHENANTHRENE AND PYRENE IN ROCKY DESERTIFICATION SOIL IN GUIZHOU, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 178-185,214. doi: 10.13205/j.hjgc.202209024
    [8]WAN Jing-min, ZHANG Fa-wang, HAN Zhan-tao, SONG Pei-pei, BAI Yun. ADSORPTION OF HEAVY METAL IONS ON ALKALI-MELTIING AND HYDROTHERMAL MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 108-117. doi: 10.13205/j.hjgc.202209015
    [9]QI Xiaoxue, ZHANG Chen, YU Jianghua. PREPARATION OF PUMICE BASED ON CONSTRUCTION WASTE AND ITS ADSORPTION PERFORMANCE ON HEAVY METALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 171-177. doi: 10.13205/j.hjgc.202208024
    [10]WU Qin-yue, LIU He, ZHENG Wei, LIU Hong-bo, ZHENG Zhi-yong, ZHANG Yan, ZHANG Cui-cui. PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013
    [11]CHEN Lin, PING Wei, YAN Bin, WU Yan, FU Chuan, HUANG Lian-qi, LIU Lu, YIN Mao-yun. ADSORPTION CHARACTERISTICS OF Cr(Ⅵ) BY SLUDGE BIOCHAR UNDER DIFFERENT PYROLYSIS TEMPERATURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 119-124. doi: 10.13205/j.hjgc.202008020
    [12]XU Si-han, WANG Min-yan, ZHANG Jin, DIAO Han-jie, LI Yan-ming, SHAN Sheng-dao, CAO Yu-cheng. EFFECT OF PYROLYSIS TIME ON CHARACTERISTICS AND HEAVY METAL ECOLOGICAL RISKS IN BIOCHAR MADE FROM WASTEWATER SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 162-167. doi: 10.13205/j.hjgc.202003027
    [13]CHENG Shu-zhen, SUN Chang-shun, WANG Li-xiang, GUO Xin-chao, LI Yuan-han. ANALYSIS ON CONTENT CHARACTERISTICS OF NUTRIENTS AND HEAVY METALS IN URBAN SLUDGE OF SHAANXI PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 65-69. doi: 10.13205/j.hjgc.202005012
    [14]LI Jing, BAO Dong-jie, WANG Xiang-ning, LIU Zhan-meng. ADSORPTION PROPERTIES AND MECHANISM OF A MAGNETIC NANOCOMPOSITE ADSORBENT (PFM) FOR COPPER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 84-88. doi: 10.13205/j.hjgc.202005015
    [15]YAN Bing-gang, HU Jia-wei, JIANG Xiao-qian, YU Yang, GUAN Yun-tao. ADSORPTION PERFORMANCE AND MECHANISM OF PHOSPHATE AND PHYTIC ACID ON MAGNESIUM-LADEN BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 94-101. doi: 10.13205/j.hjgc.202006015
    [17]Zhang Jun, Xu Junyang, Wang Dunqiu, Yang Huiping, Wu Xiaohui. EFFECTS OF TYPES AND CONCENTRATIONS OF SULFUR SUBSTRATE ON BIOLEACHING HEAVY METALS FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 39-43. doi: 10.13205/j.hjgc.201504009
    [18]Chen Yasong, Zhang Chao, Chen Zhenguo, Dong Wenjie, Xu Bingxin. EARLY WARNING OF ACTIVATED SLUDGE INHIBITORY ACTION BY HEAVY METALS BASED ON OXYGEN UPTAKE RATE INDEX[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 27-31. doi: 10.13205/j.hjgc.201502006
    [19]Xu Yanzhe Fang Zhanqiang, . ADVANCES ON REMEDIATION OF HEAVY METAL IN THE SOIL BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 156-159. doi: 10.13205/j.hjgc.201502035
    [20]RESEARCH PROGRESS ON IMMOBILIZATION AND REMOVAL OF HEAVY METALS FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 82-86. doi: 10.13205/j.hjgc.201412014
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.0 %FULLTEXT: 9.0 %META: 85.5 %META: 85.5 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.8 %其他: 10.8 %China: 1.5 %China: 1.5 %Netherlands: 0.3 %Netherlands: 0.3 %South Africa: 2.0 %South Africa: 2.0 %[]: 1.7 %[]: 1.7 %上海: 1.7 %上海: 1.7 %东莞: 0.3 %东莞: 0.3 %东营: 3.8 %东营: 3.8 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %伊犁哈萨克自治州: 0.3 %伊犁哈萨克自治州: 0.3 %保定: 0.3 %保定: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 3.2 %北京: 3.2 %十堰: 0.3 %十堰: 0.3 %南京: 0.9 %南京: 0.9 %南充: 0.3 %南充: 0.3 %南通: 0.3 %南通: 0.3 %台州: 1.5 %台州: 1.5 %合肥: 1.2 %合肥: 1.2 %哈密: 0.3 %哈密: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %大连: 0.3 %大连: 0.3 %天津: 1.5 %天津: 1.5 %太原: 0.6 %太原: 0.6 %孟买: 0.3 %孟买: 0.3 %安庆: 0.6 %安庆: 0.6 %巴格达: 1.5 %巴格达: 1.5 %常德: 0.3 %常德: 0.3 %广州: 6.1 %广州: 6.1 %弗吉: 0.3 %弗吉: 0.3 %张家口: 0.9 %张家口: 0.9 %惠州: 0.3 %惠州: 0.3 %成都: 0.6 %成都: 0.6 %扬州: 0.3 %扬州: 0.3 %拉贾斯坦邦: 0.3 %拉贾斯坦邦: 0.3 %新余: 0.3 %新余: 0.3 %昆明: 0.3 %昆明: 0.3 %昌吉: 0.3 %昌吉: 0.3 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.6 %朝阳: 0.6 %杭州: 0.6 %杭州: 0.6 %武汉: 1.2 %武汉: 1.2 %毕节: 0.9 %毕节: 0.9 %沈阳: 0.3 %沈阳: 0.3 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.9 %济南: 0.9 %济源: 0.6 %济源: 0.6 %温州: 0.6 %温州: 0.6 %湖州: 1.2 %湖州: 1.2 %漯河: 0.6 %漯河: 0.6 %烟台: 0.3 %烟台: 0.3 %益阳: 0.6 %益阳: 0.6 %石家庄: 0.3 %石家庄: 0.3 %芒廷维尤: 20.1 %芒廷维尤: 20.1 %苏州: 0.3 %苏州: 0.3 %衡阳: 0.3 %衡阳: 0.3 %西双版纳傣族自治州: 0.9 %西双版纳傣族自治州: 0.9 %西宁: 13.1 %西宁: 13.1 %西安: 0.3 %西安: 0.3 %贵阳: 0.9 %贵阳: 0.9 %运城: 2.9 %运城: 2.9 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.5 %郑州: 1.5 %重庆: 1.5 %重庆: 1.5 %金华: 0.3 %金华: 0.3 %铁岭: 0.3 %铁岭: 0.3 %长沙: 0.3 %长沙: 0.3 %长治: 0.3 %长治: 0.3 %雅安: 0.6 %雅安: 0.6 %青岛: 0.9 %青岛: 0.9 %其他ChinaNetherlandsSouth Africa[]上海东莞东营临汾乌鲁木齐伊犁哈萨克自治州保定兰州北京十堰南京南充南通台州合肥哈密哈尔滨大连天津太原孟买安庆巴格达常德广州弗吉张家口惠州成都扬州拉贾斯坦邦新余昆明昌吉晋城朝阳杭州武汉毕节沈阳洛阳济南济源温州湖州漯河烟台益阳石家庄芒廷维尤苏州衡阳西双版纳傣族自治州西宁西安贵阳运城遵义邯郸郑州重庆金华铁岭长沙长治雅安青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (131) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return