Citation: | DAI Liang, ZHAO Wei-fan, ZHANG Hong-wei, HAN Tao, ZHANG Kang. RESEARCH PROGRESS ON ADSORPTION OF HEAVY METALS BY SEWAGE SLUDGE-BASED BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 70-77. doi: 10.13205/j.hjgc.202012013 |
李海芹, 王静. 重金属废水污染及其处理方法研究[J]. 中国资源综合利用, 2017, 35(12):51-52
,58.
|
ZOU Y D, WANG X X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for theremoval of heavy metal ions:a review[J]. Environmental Science & Technology, 2016, 50(14):7290-7304.
|
HUANG Z, LU L, CAI Z X, et al. Individual and competitive removal of heavy metals using capacitive deionization[J]. Journal of Hazardous Materials, 2016, 302(3):323-331.
|
PELIGRO F R, PAVLOVIC L, ROJAS R, et al. Removal of heavy metals from simulated wastewater by in situ formation of layered double hydroxides[J]. Chemical Engineering Journal, 2016, 306:1035-1040.
|
郭玲. 重金属废水处理问题和对策研究[J]. 环境与发展, 2018, 30(1):71-73.
|
DEVI P, SAROHA A K. Utilization of sludge based adsorbents for the removal of various pollutants:a review[J]. Science of The Total Environment, 2016, 578:16-33.
|
黄燕宁, 王晓, 张宏杰, 等. 污泥生物炭的研究进展[J]. 功能材料, 2017, 48(9):9024-9029.
|
张又弛, 李会丹. 生物炭对土壤中铁生物还原作用和重金属分布的影响[J]. 环境污染与防治, 2019, 41(4):377-381.
|
王向前, 胡学玉, 陈窈君, 等. 生物炭及改性生物炭对水环境中重金属的吸附固定作用[J]. 环境工程, 2016,34(12):32-37.
|
YOO J C, BEIYUAN J, WANG L, et al. A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils[J]. Science of the Total Environment, 2018, 616/617:572-582.
|
YANG G, ZHANG G M, WANG H C. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78:60-73.
|
范皓翔, 院士杰, 戴晓虎. 污泥衍生生物炭研究进展[J]. 净水技术, 2019, 38(3):32-37
,44.
|
NADIA R G, QUISPE V, JAVIER Á G, et al. Co-pyrolysis of sewage sludge and manure[J]. Waste Management, 2017, 59:211-221.
|
HO S H, CHEN Y D, YANG Z K, et al. High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge[J]. Bioresource Technology, 2017, 246:142-149.
|
LIU L H, LIU X, WANG D Q, et al. Removal and reduction of Cr(Ⅵ) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production, 2020, 257:120562.
|
戴亮, 任珺, 陶玲, 等. 不同热解温度下污泥基生物炭的性质及对Cd2+的吸附特性[J]. 环境工程学报, 2017, 11(7):4029-4035.
|
GAO N B, QUAN C, LIU B L, et al. Continuous pyrolysis of sewage sludge in a screw-feeding reactor:products characterization and ecological risk assessment of heavy metals[J]. Energy Fuel, 2017, 31:5063-5072.
|
杨艳琴, 崔敏华, 任屹罡, 等. 热解温度诱导下污泥生物炭特性和吸附能力相关性[J].深圳大学学报(理工版), 2020, 37(2):194-201.
|
ZAKER A, CHEN Z, WANG X L, et al. Microwave-assisted pyrolysis of sewage sludge:a review[J]. Fuel Processing Technology 2019, 187:84-104.
|
GARLAPALLI R K, WIRTH B, REZA M T. Pyrolysis of hydrochar from digestate:effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation[J]. Bioresource Technology, 2016, 220:168-174.
|
莫官海, 谢水波, 曾涛涛, 等. 污泥基生物炭处理酸性含U(Ⅵ)废水的效能与机理[J].化工学报, 2020, 71(5):2352-2362.
|
李智伟, 王兴栋, 林景江, 等. 污泥生物炭制备过程中氮磷钾及重金属的迁移行为[J]. 环境工程学报, 2016, 10(3):1392-1399.
|
彭成法, 肖汀璇, 李志建. 热解温度对污泥基生物炭结构特性及对重金属吸附性能的影响[J]. 环境科学研究, 2017, 30(10):1637-1644.
|
王格格, 李刚, 陆江银, 等. 热解工艺对污泥制备生物炭物理结构的影响[J]. 环境工程学报, 2016, 10(12):7289-7293.
|
RAHEEM A, SIKARWAR V S, HE J, et al. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge:a review[J]. Chemical Engineering Journal, 2018, 337:616-641.
|
HAN R, ZHAO C X, LIU J W, et al. Thermal characterization and syngas production from the pyrolysis of biophysical dried and traditional thermal dried sewage sludge[J]. Bioresource Technology, 2015, 198:276-282.
|
刁韩杰, 张进, 王敏艳, 等. 高温热解对污泥炭特性及其重金属形态变化的影响[J]. 环境工程, 2019, 37(3):29-34.
|
董智伟, 左宁, 王彦, 等. 热解污泥生物炭化学组成及环境效应研究进展[J]. 环境污染与防治, 2019, 41(4):479-484.
|
王磊, 王胜凡, 刘欢, 等. 污泥基生物炭的制备及其对重金属的吸附性能[J]. 广东化工, 2018, 45(5):82-84.
|
范世锁,李雪,胡凯,等. 污泥基生物炭吸附重金属Cd的动力学和热力学[J]. 环境工程学报, 2016, 10(10):5971-5977.
|
于建, 高康乐, 汪丽, 等. 钢渣粉末吸附去除废水中磷的研究[J]. 环境工程, 2012, 30(S2):36-40.
|
GAO L Y, DENG J H, HUANG G F, et al. Relative distribution of Cd(Ⅱ) adsorption mechanisms on biochars derived from rice straw and sewage sludge[J]. Bioresource Technology, 2019, 272:114-122.
|
CHEN T, ZHOU Z Y, HAN R, et al. Adsorption of cadmium by biochar derived from municipal sewage sludge:impact factors and adsorption mechanism[J]. Chemosphere, 2015, 134:286-293.
|
顾亚,王建平,王修,等.我国铅资源开发现状和可持续发展建议[J]. 资源与产业,2018,20(1):39-46.
|
LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb(Ⅱ) sorption mechanisms by sludge-derived biochar[J]. Water Research,2012,46,854-862.
|
WONGROD S, SIMON S, GUIBAUD G, et al. Lead sorption by biochar produced from digestates:consequences of chemical modification and washing[J]. Journal of Environmental Management, 2018, 219:277-284.
|
CHEN T, ZHOU Z Y, XU S, et al. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge[J]. Bioresource Technology, 2015, 190:388-394.
|
DONG X L, MA L Q, LI Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials, 2011, 190:909-915.
|
ZHANG W H, MAO S Y, CHEN H, et al. Pb(Ⅱ) and Cr(Ⅵ) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions[J]. Bioresource Technology, 2013, 147:545-552.
|
PAPE P L, BATTAGLIA-BRUNET F, PARMENTIER M, et al. Complete removal of arsenic and zinc from a heavily contaminated acid Mine drainage via an indigenous SRB consortium[J]. Journal of hazardous materials, 2016, 321:764-772.
|
WONGROD S, SIMON S, HULLEBUSCHE D, et al. Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As(Ⅲ and Ⅴ) and Cd(Ⅱ) sorption[J]. International Biodeterioration & Biodegradation, 2018,135:96-102.
|
YOON K, CHO D W, TSANGDANIEL C W, et al. Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water[J]. Bioresource Technology, 2017, 246:69-75.
|
陈坦, 韩融, 王洪涛, 等. 污泥基生物炭对重金属的吸附作用[J]. 清华大学学报, 2014, 54(8):1062-1067.
|
李江山, 薛强, 王平, 等. 市政污泥生物碳对重金属的吸附特性[J]. 环境科学研究, 2013, 26(11):1246-1251.
|
KILIÇ M, KIRBIYIK Ç, ÇEPELIOĞULLAR Ö, et al. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis[J]. Applied Surface Science, 2013, 283:856-862.
|
戴财胜, 张玉东. 造纸污泥制备功能吸附材料及其对Cu(Ⅱ)吸附性能的研究[J]. 环境污染与防治, 2019, 41(6):621-625.
|
ZUO W Q, CHEN C, CUI H J, et al. Enhanced removal of Cd(Ⅱ) from aqueous solution using CaCO3 nanoparticle modified sewage sludge biochar[J]. RSC Advances, 2017, 7:16238-16243.
|
陈坦, 周泽宇, 孟瑞红, 等. 改性污泥基生物炭的性质与重金属吸附效果[J]. 环境科学, 2019, 40(4):1842-1848.
|
MA Y, LIU W J, ZHANG N, et al. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution[J]. Bioresource Technology, 2014, 169:403-408.
|
CHEN Y D, HO S H, WANG D W, et al. Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis[J]. Bioresource Technology, 2018, 247:463-470.
|
IFTHIKAR J, WANG J, WANG Q L, et al. Highly efficient lead distribution by magnetic sewage sludge biochar:sorption mechanisms and bench applications[J]. Bioresource Technology, 2017, 238:399-406.
|
LI H, MAHYOUB S A A, LIAO W J, et al. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue[J]. Bioresource Technology, 2017, 223:20-26.
|
CHEN T, ZHANG Y X, WANG H T, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge[J]. Bioresource technology, 2014, 164:47-54.
|
YUAN H R, LU T, HUANG H Y, et al. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112:284-289.
|
SOLMAZ S, EHSAN R, NASSER T. Enhanced removal of phosphate from aqueous solutions using a modified sludge derived biochar:comparative study of various modifying cations and RSM based optimization of pyrolysis parameters[J]. Journal of Environmental Management, 2018, 225:75-83.
|
LI H B, DONG X L, DASILVA E B, et al. Mechanisms of metal sorption by biochars:biochar characteristics and modifications[J]. Chemosphere, 2017, 178:466-478.
|
JIN J W, LI Y N, ZHANG J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge[J]. Journal of Hazardous Materials, 2016, 320:417-426.
|
JIN H, CAPAREDA S, CHANG Z, et al. Biochar pyrolytically produced from municipal solid wastes for aqueous As(Ⅴ) removal:adsorption property and its improvement with KOH activation[J]. Bioresource Technology, 2014, 169:622-629.
|
郑凯琪, 王俊超, 刘姝彤, 等. 不同热解温度污泥生物炭对Pb(Ⅱ)、Cd(Ⅱ)的吸附特性[J].环境工程学报, 2016, 10(12):7277-7282.
|
郭素华, 许中坚, 李方文, 等. 生物炭对水中Pb(Ⅱ)和Zn(Ⅱ)的吸附特征[J]. 环境工程学报, 2015, 9(7):3215-3222.
|
张越, 林珈羽, 刘沅, 等. 改性生物炭对镉离子吸附性能研究[J]. 武汉科技大学学报, 2016, 39(1):48-52.
|
张隽晔, 周培疆, 管鲲. MnO2改性累托石/污泥生物炭复合材料的制备及其对Pb(Ⅱ)和Cd(Ⅱ)吸附特性研究[J]. 安全与环境工程, 2019, 26(3):101-108.
|
NAIYA T K, BHATTACHARYA A K, DAS S K. Adsorption of Cd(Ⅱ) and Pb(Ⅱ) from aqueous solutions on activated alumina[J]. Journal of Colloid and Interface Science, 2009, 333(1):14-26.
|
MA X, YANG S T, TANG H, et al. Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids[J]. Journal of Colloid and Interface Science, 2015, 448:347-355.
|
WANG X J, XU X M, LIANG X, et al. Adsorption of copper(Ⅱ) onto sewage sludge-derived materials via microwave irradiation[J]. Journal of Hazardous Materials, 2011, 192:1226-1233.
|
IFTHIKAR J, JIAO X, NGAMBIA A, et al. Facile one-pot synthesis of sustainable carboxymethyl chitosan-sewage sludge biochar for effective heavy metal chelation and regeneration[J]. Bioresource Technology, 2018, 262:22-31.
|