Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
Citation: HAN Ya-lin, WANG Fu-hao, WANG Qun, LI Ting, SHE Zong-lian. EFFECT OF OPERATIONAL MODE ON NITROGEN REMOVAL AND MICROBIAL CUMMUNITY IN PROCESS OF SIMULTANEOUS PARTIAL NITRIFICATION AND DENITRIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 51-57,17. doi: 10.13205/j.hjgc.202101007

EFFECT OF OPERATIONAL MODE ON NITROGEN REMOVAL AND MICROBIAL CUMMUNITY IN PROCESS OF SIMULTANEOUS PARTIAL NITRIFICATION AND DENITRIFICATION

doi: 10.13205/j.hjgc.202101007
  • Received Date: 2019-09-07
    Available Online: 2021-04-23
  • In this study, simultaneous partial nitrification and denitrification (SPND) process was successfully established for the treatment of high-salinity wastewater in a hybrid sequencing batch biofilm reactor (HSBBR). The effect of operational mode on the reactor performance and microbial community was investigated. When the reactor was operated in alternating anoxic/aerobic mode (anoxic/aerobic hour ratio was 2.0 h/4.5 h), the removal efficiencies of NH4+-N, total inorganic nitrogen (TIN) and COD were 95.00%, 84.83% and 86.72%, respectively, and the effluent contained nitrite and nitrate. When operational mode was switched to fully aerobic mode (anoxic/aerobic hour ratio was 0.0/6.5 h), removal efficiencies of NH3-N, TIN and COD increased to 100.00%, 85.94% and 89.46%, and nitrate was the only nitrogen component in the effluent. The high-throughput sequencing results showed that the dominant phyla were Proteobacteria and Bacteroidetes in both suspended sludge (S-sludge) and biofilm in two modes. Genus Nitrosomonas was the only ammonia-oxidizing bacteria (AOB) detected in this study and appeared higher relative abundance in S-sludge and biofilm samples in the fully aerobic mode compared to the alternating anoxic/aerobic mode. S-sludge and biofilm shared similar dominant denitrifying bacteria (DNB), including genera Candidatus_Competibacter, Paracoccus, Thauera and Denittrasoma. The relative abundance of Candidatus_Competibacter and Thauera decreased in fully aerobic mode, while Paracoccus and Denitratisoma showed increasing tendency. Multiple DNB genera accompanied by AOB contributed to the efficient nitrogen removal via SPND process.
  • FERRER-POLONIO E, GARCÍA-QUIJANO N T, MENDOZA-ROCA J A, et al. Effect of alternating anaerobic and aerobic phases on the performance of a SBR treating effluents with high salinity and phenols concentration[J]. Biochemical Engineering Journal, 2016,113:57-65.
    LIAO R H, LI Y, WANG Z, et al. 454 pyrosequencing analysis on microbial diversity of an expanded granular sludge bed reactor treating high NaCl and nitrate concentration wastewater[J]. Biotechnology and Bioprocess Engineering, 2014,19(1):183-190.
    DAN N P, VISVANATHAN C, BASU BISWADEEP. Comparative evaluation of yeast and bacterial treatment of high salinity wastewater based on biokinetic coefficients[J]. Bioresource Technology, 2003,87:51-56.
    WANG J L, GONG B Z, HUANG W, et al. Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing[J]. Bioresource Technology, 2017,228:31-38.
    SHE Z L, ZHAO L T, ZHANG X L,et al. Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater[J]. Chemical Engineering Journal, 2016, 288:207-215.
    YANG S, YANG F L. Nitrogen removal via short-cut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor[J]. Journal of Hazardous Materials, 2011,195:318-323.
    ZHANG L Q, WEI C H, ZHANG K F, et al. Effect of temperature on simultaneous nitrification and denitrification by using sequencing batch reactor[J]. Bioprocess and Biosystems Engineering, 2009, 32(2):175-182.
    于德爽,袁梦飞,王晓霞,等.厌氧/好氧SPNDPR系统实现低C/N城市污水同步脱氮除磷的优化运行[J]. 环境科学,2018, 39(11):5066-5073.
    孙赛武,杨朝晖,曾光明,等. 进水模式对SBR性能及氮形态转化的影响[J]. 环境科学,2009, 30(1):121-126.
    曾薇,彭永臻,王淑莹. SBR工艺交替硝化反硝化运行方式的可行性研究[J]. 环境科学学报,2004, 24(4):576-580.
    LI H S, ZHOU S Q, HUANG G T, et al. Partial nitritation of landfill leachate with varying influent composition under intermittent aeration conditions[J]. Process Safety and Environmental Protection, 2013, 91(4):285-294.
    ZHANG F, LI P, CHEN M S, et al. Effect of operational modes on nitrogen removal and nitrous oxide emission in the process of simultaneous nitrification and denitrification[J]. Chemical Engineering Journal, 2015, 280:549-557.
    王芳,葛桂波. SBR不同运行模式对好氧颗粒污泥性能的影响[J]. 苏州科技学院学报(工程技术版),2015, 28(4):18-23.
    高春娣,王惟肖,李浩,等. SBR法交替缺氧好氧模式下短程硝化效率的优化[J]. 中国环境科学,2015, 35(2):403-409.
    国家环境保护总局, 水和废水监测分析方法编委会.水和废水监测分析方法[M]. 4版. 北京:中国环境出版社,2002.
    王晓霞,王淑莹,赵冀,等.厌氧/好氧SNEDPR系统处理低C/N污水的优化运行[J]. 中国环境科学,2016,36(9):2672-2680.
    HE S L, NIU Q G, LI Y Y, et al. Factors associated with the diversification of the microbial communities within different natural and artificial saline environments[J]. Ecological Engineering,2015, 83:476-484.
    黄郑郑,曹刚,李紫惠,等. XH02菌强化反应器脱氮过程中菌群结构的高通量分析[J]. 中国环境科学,2107,37(5):1922-1929.
    WANG Y Y, CHEN J, ZHOU S, et al. 16S rRNA gene high-throughput sequencing reveals shift in nitrogen conversion Related microorganisms in a CANON system in response to salt stress[J]. Chemical Engineering Journal, 2017,317:512-521.
    侯爱月,李军,卞伟,等. 不同短程硝化系统中微生物群落结构的对比分析[J]. 中国环境科学,2106,36(2):428-436.
    HU M, WANG X H, WEN X H, et al. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis[J]. Bioresource Technology, 2012,117:72-79.
    SUTO R, ISHIMOTO C, CHIKYU M, et al. Anammox biofilm in activated sludge swine wastewater treatment plants[J]. Chemosphere, 2017, 167:300-307.
    CHEN J F, YANG Y W, LIU Y Y, et al. Bacterial community shift in response to a deep municipal tail wastewater treatment system[J]. Bioresource Technology, 2019, 281:195-201.
    HUANG W Y, SHE Z L, GAO M C, et al. Effect of anaerobic/aerobic duration on nitrogen removal and microbial community in a simultaneous partial nitrification and denitrification system under low salinity[J]. Science of the Total Environment, 2019, 651:859-870.
    ZHANG L, SUA F, WANG N, et al. Biodegradability enhancement of hydrolyzed polyacrylamide wastewater by a combined Fenton-SBR treatment process[J]. Bioresource Technology, 2019, 27:99-107.
    邢金良,张岩,陈昌明,等. CEM-UF组合膜-硝化/反硝化系统处理低C/N废水及种群结构分析[J]. 环境科学,2018,39(3):1342-1349.
    TANG B, CHEN Q Y, BIN L Y, et al. Insight into the microbial community and its succession of a coupling anaerobic-aerobic biofilm on semi-suspended bio-carriers[J]. Bioresource Technology, 2018, 247:591-598.
    TAYLAR A E, BOTTOMLEY P J. Nitrite production by Nitrosomonas europaea and Nitrosospira sp.AV in soils at different solution concentrations of ammonium[J]. Soil Biology and Biochemistry, 2006, 38(4):828-836.
    HEYLEN K, GEVERS D, VANPARYS B, et al. The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers[J]. Environmental microbiology,2006, 8(11):2012-2021.
    RUBIO-RINCÓN F J, LOPEZ-VAZQUEZ C M, WELLES L, et al. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120:156-164.
    TIAN Q, ZHUANG L J, ONG S K, et al. Phosphorus (P) recovery coupled with increasing influent ammonium facilitated intracellular carbon source storage and simultaneous aerobic phosphorus & nitrogen removal[J]. Water Research, 2017,119:267-275.
    HOSSAIN M I, CHENG L, CORD-RUWISCH R. Energy efficient COD and N-removal from high-strength wastewater by a passively aerated GAO dominated[J]. Bioresource Technology, 2019, 283:148-158.
    ZENG R J, YUAN Z G, KELLER J. Enrichment of denitrifying glycogen-accumulating on ganisms in anaerobic/anoxic activated sludge system[J]. Biotechnology and Bioengineering, 2003, 81(4):397-404.
    HOSSAIN M I, PAPARINI A, CORD-RUWISCH R. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake[J]. Bioresource Technology,2017, 228:1-8.
    SHI Z, ZHANG Y, ZHOU J T, et al. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM[J]. Bioresource Technology, 2013,148:144-148.
    MEDHI K, THAKUR I S. Bioremoval of nutrients from wastewater by a denitrifier Paracoccus denitrificans ISTOD1[J]. Bioresource Technology Reports, 2018,1:56-60.
    ZHANG H H, ZHAO Z F, CHEN S N, et al. Paracoccus versutus KS293 adaptation to aerobic and anaerobic denitrification:insights from nitrogen removal functional gene abundance and proteomic profiling analysis[J]. Bioresource Technology, 2018,260:321-328.
    YAN X M, ZHU C Y, HUANG B, et al. Enhanced nitrogen removal from electroplating tail wastewater through two-staged anoxic-oxic (A/O) process[J]. Bioresource Technology, 2018, 247:157-164.
    WU D, YI X Y, TANG R, et al. Single microbial fuel cell reactor for coking wastewater treatment:simultaneous carbon and nitrogen removal with zero alkaline consumption[J]. Science of the Total Environment, 2018, 621:497-506.
  • Relative Articles

  • Cited by

    Periodical cited type(16)

    1. 许华一,李姗蔚,韦静,周向同,吴智仁. 菌藻共生系统实现短程硝化工艺的藻供氧条件和影响因素分析. 环境工程. 2024(05): 42-52 . 本站查看
    2. 王梦晗,吴朕君,郭婷,李殊涵,陈建东. 亚硝酸型同步硝化反硝化SBR的启动及脱氮效率的影响研究. 乡村科技. 2024(11): 121-126 .
    3. 马壮,陈增丰,胡健,潘奥栋,李馨予,吴伟祥. 微氧曝气工艺处理垃圾渗滤液小试研究. 环境卫生工程. 2023(01): 74-80+86 .
    4. 伍建业,吴永贵,兰美燕,彭子乐,朱鑫维,郑煜,贺宇. 复合人工湿地对陆基水产养殖废水中氮磷的净化及其微生物群落特征. 环境工程学报. 2023(02): 517-531 .
    5. 李萌,刘如玲,陈进进,彭秋瑜,刘健,佘宗莲. 高盐条件下pH对同步短程硝化反硝化脱氮性能及微生物群落的影响. 中国海洋大学学报(自然科学版). 2023(04): 67-76 .
    6. 康华,李红艳,龙北生,彭加曦,焦阳. 改进型A_2NSBR工艺参数及其除磷脱氮特性. 环境工程. 2023(04): 123-130 . 本站查看
    7. 武品,王志平,陈亚,蓝金晶,吴晓鑫. 改良A/O脱氮工艺处理农村生活污水. 水处理技术. 2022(03): 104-107+113 .
    8. 姚丽婷,陈启智,赖勇州,梁瑜海. 泥膜混合MBBR系统自养脱氮工艺的启动研究. 环境科学研究. 2022(04): 999-1006 .
    9. 王依婷,汪宇,高宇,张琼,李韧,于莉芳,彭党聪. Fe~(3+)对MBBR系统脱氮途径及关键酶性能影响分析. 环境科学学报. 2022(05): 169-177 .
    10. 郑彭生. 煤矿生活污水短程同步脱氮的实验研究. 黑龙江科技大学学报. 2022(03): 339-344 .
    11. 苏俊宇,陈辰,李伟,雷骆,祝骏贤,罗来福,耿露露,史伟,李健松,张继平,朱新平. 2种充气模式中华鳖工厂化养殖水体水质及微生物群落结构. 广东海洋大学学报. 2022(05): 45-53 .
    12. 陈小弯,田华川,常军军,陈礼强,舒兴权,冯秀祥. 杞麓湖中河河口表流湿地净化河道污染水的效果及其微生物群落特征. 生态环境学报. 2022(09): 1865-1875 .
    13. 薛江鹏,莫治新,李有文,蔡吉祥,张怡萍,查向浩. 微生物—微米零价铁工艺的脱氮效果及机理. 化工环保. 2022(06): 686-692 .
    14. 贺亮,施万胜,赵明星,陆东亮,华天予,张炜,萧壮波,黄兴,阮文权. 基于分点进水的垃圾渗滤液短程硝化反硝化脱氮性能. 环境工程学报. 2021(05): 1753-1762 .
    15. 姚丽婷,梁瑜海,陈漫霞,陈莉丹,何坤桓,余光伟. 高溶解氧条件下不同曝气量对短程硝化性能及微生物特征的影响. 环境科学学报. 2021(08): 3258-3267 .
    16. 王旭,王福浩,吴澜,佘宗莲. 超高盐度对耐盐活性污泥脱氮、微生物活性和群落结构的影响. 中国海洋大学学报(自然科学版). 2021(S1): 50-59 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.4 %FULLTEXT: 12.4 %META: 83.8 %META: 83.8 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %China: 2.2 %China: 2.2 %Ulu Bedok: 0.2 %Ulu Bedok: 0.2 %[]: 0.7 %[]: 0.7 %上海: 2.2 %上海: 2.2 %临汾: 0.2 %临汾: 0.2 %保定: 0.2 %保定: 0.2 %信阳: 0.2 %信阳: 0.2 %兰州: 0.5 %兰州: 0.5 %北京: 7.7 %北京: 7.7 %南京: 1.5 %南京: 1.5 %南充: 0.2 %南充: 0.2 %台州: 1.2 %台州: 1.2 %合肥: 0.5 %合肥: 0.5 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.7 %天津: 0.7 %太原: 0.5 %太原: 0.5 %安康: 0.7 %安康: 0.7 %常德: 0.2 %常德: 0.2 %广州: 1.0 %广州: 1.0 %张家口: 1.7 %张家口: 1.7 %徐州: 0.2 %徐州: 0.2 %成都: 0.2 %成都: 0.2 %扬州: 0.2 %扬州: 0.2 %无锡: 0.5 %无锡: 0.5 %昆明: 0.2 %昆明: 0.2 %晋城: 0.5 %晋城: 0.5 %曼谷: 0.7 %曼谷: 0.7 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.2 %杭州: 1.2 %榆林: 0.5 %榆林: 0.5 %武汉: 1.2 %武汉: 1.2 %江门: 0.2 %江门: 0.2 %济南: 0.2 %济南: 0.2 %济源: 0.2 %济源: 0.2 %淮南: 1.0 %淮南: 1.0 %深圳: 0.7 %深圳: 0.7 %温州: 0.2 %温州: 0.2 %湖州: 1.5 %湖州: 1.5 %漯河: 1.2 %漯河: 1.2 %潍坊: 0.2 %潍坊: 0.2 %盐城: 0.2 %盐城: 0.2 %石家庄: 1.0 %石家庄: 1.0 %美国伊利诺斯芝加哥: 0.7 %美国伊利诺斯芝加哥: 0.7 %芒廷维尤: 13.9 %芒廷维尤: 13.9 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.2 %苏州: 0.2 %萍乡: 0.2 %萍乡: 0.2 %衢州: 0.5 %衢州: 0.5 %西宁: 29.9 %西宁: 29.9 %西安: 0.2 %西安: 0.2 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 2.7 %运城: 2.7 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.5 %邯郸: 0.5 %郑州: 2.0 %郑州: 2.0 %重庆: 0.2 %重庆: 0.2 %金华: 0.5 %金华: 0.5 %银川: 0.2 %银川: 0.2 %长沙: 0.2 %长沙: 0.2 %长治: 0.2 %长治: 0.2 %阳泉: 1.5 %阳泉: 1.5 %阿克苏: 0.2 %阿克苏: 0.2 %青岛: 0.2 %青岛: 0.2 %其他ChinaUlu Bedok[]上海临汾保定信阳兰州北京南京南充台州合肥嘉兴天津太原安康常德广州张家口徐州成都扬州无锡昆明晋城曼谷朝阳杭州榆林武汉江门济南济源淮南深圳温州湖州漯河潍坊盐城石家庄美国伊利诺斯芝加哥芒廷维尤芝加哥苏州萍乡衢州西宁西安诺沃克贵阳运城遵义邯郸郑州重庆金华银川长沙长治阳泉阿克苏青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (336) PDF downloads(17) Cited by(26)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return