ZHAO Yan, GUO Jia-lin, SHI Yang, WU Zhi-qi, JIANG Bin-hui. A GROUNDWATER INFLOW PREDICTION METHOD FOR FUSHUN WEST OPEN-PIT MINE BASED ON GMS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 75-79,129. doi: 10.13205/j.hjgc.202101011
Citation:
ZHAO Yan, GUO Jia-lin, SHI Yang, WU Zhi-qi, JIANG Bin-hui. A GROUNDWATER INFLOW PREDICTION METHOD FOR FUSHUN WEST OPEN-PIT MINE BASED ON GMS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 75-79,129. doi: 10.13205/j.hjgc.202101011
ZHAO Yan, GUO Jia-lin, SHI Yang, WU Zhi-qi, JIANG Bin-hui. A GROUNDWATER INFLOW PREDICTION METHOD FOR FUSHUN WEST OPEN-PIT MINE BASED ON GMS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 75-79,129. doi: 10.13205/j.hjgc.202101011
Citation:
ZHAO Yan, GUO Jia-lin, SHI Yang, WU Zhi-qi, JIANG Bin-hui. A GROUNDWATER INFLOW PREDICTION METHOD FOR FUSHUN WEST OPEN-PIT MINE BASED ON GMS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 75-79,129. doi: 10.13205/j.hjgc.202101011
A GROUNDWATER INFLOW PREDICTION METHOD FOR FUSHUN WEST OPEN-PIT MINE BASED ON GMS
Received Date: 2020-04-07
Available Online:
2021-04-23
Abstract
In this paper, a mathematical model was set up, taking the Fushun West Open-pit mine as the research area, using the GMS (groundwater modeling system) numerical simulation software, based on the analysis of the mining area and its surrounding area, geological and hydrogeological conditions, as well as the characteristics of the formation lithology and geological structure. Based on the geological exploration data of the working area and the analysis of water filling factors, a hydrogeological model was established to predict the water inflow, and the layout scheme of drainage well in equilibrium state was put forward. The results showed that according to the topographic characteristics of the mine, when five horizontal wells with depth of 100 m, length of 100 m and displacement volume of 10~20 m3 /d were placed on the north and south sides of the mine, and four shafts with depth of 70~100 m and displacement volume of 20 m3 /d were placed at the bottom of the mine according to the spacing of 100 m in the simulation area, no water would overflow from the mine.
References
冯翔. 基于GMS三维地下水模型的矿井涌水量预测研究[D]. 北京:中国地质大学, 2017:36-38.
张政. 某露天矿采场地下水调查研究[D]. 包头:内蒙古科技大学, 2015:58-59.
LIANG S C, ZHAO X S, LI S. The application of gms in numerical simulation of groundwater and faults disposing in Gaizi River source[J]. Advanced Materials Research, 2012, 14(2):20-24.
陈劲松, 万力. MODFLOW中不同方程组求解方法差异分析[J]. 工程勘察, 2002(2):25-27.
杨旭, 黄家柱, 许建军, 等. 基于组件式GIS的地下水动态管理系统设计与开发[J]. 地理与地理信息科学, 2004, 20(1):47-50.
陈锁忠, 闾国年, 朱莹, 等. 基于GIS的地下水流有限差数值模拟参数自动提取研究[J]. 地球信息科学, 2006, 8(2):77-83.
GUO X. Application development of groundwater value simulation software in our country[J]. Technical Report, 2010, 32(2):20-23.
WHELAN, Castleton, KARL J, et al. FRAMES-2.0 Software System:Linking to the Groundwater Modeling System (GMS) RT3D and MT3DMS Models[J]. Technical Report, 2007, 25(4):58-62.
SHANG H, WANG W K, ZHANG J. Application of GMS in groundwater numerical simulation in the northern foot of Tianshan Mountain[J]. Water Resource and Environmental Protection, 2011, 20(3):12-15.
傅耀军, 杜金龙, 牟兆刚, 等. 基于煤矿井地下水含水系统的矿井涌水量预测方法-释水-断面流法[J]. 中国煤炭地质, 2018, 9(30):37-43.
Relative Articles
[1] CHU Yangyang, LI Hui, ZHU Yanping, HAN Xiaomeng, SHU Shihu. A REVIEW OF RESEARCH PROGRESS OF PREDICTION MODELS FOR DISINFECTION BY-PRODUCTS: EMPIRICAL MODELS [J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 38-48. doi: 10.13205/j.hjgc.202407004
[2] HE Weiqi, CHEN Rong, LU Zhixiang, MA Xu, WU Zhijie. ANOMALY DETECTION OF SMOKE EMISSIONS BASED ON WORKING CONDITION DATA [J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 79-84. doi: 10.13205/j.hjgc.202401011
[3] XIE Qi, XIA Fei, YUAN Bo. PREDICTION OF PM2.5 CONCENTRATION IN XI’AN BASED ON CEEMDAN-SE-BiLSTM MODEL [J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 105-115. doi: 10.13205/j.hjgc.202408013
[4] LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS [J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
[5] ZHOU Jianguo, WANG Jianyu, WEI Siti. PREDICTION OF PM2.5 AND OZONE CONCENTRATION BASED ON VMD-CEEMD DECOMPOSITION AND LSTM [J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 157-165,221. doi: 10.13205/j.hjgc.202306021
[6] FANG Li, HE Lijuan, HAO Run, NIE Lei, WANG Hailin. PRIMARY STUDY ON ENVIRONMENTAL IMPACT AND CONTROL MEASURES OF FUGITIVE COAL DUST DURING RAILWAY TRANSPORTATION [J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 123-127,147. doi: 10.13205/j.hjgc.202201018
[7] DONG Hao, SUN Lin, OUYANG Feng. PREDICTION OF PM2.5 CONCENTRATION BASED ON INFORMER [J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 48-54,62. doi: 10.13205/j.hjgc.202206006
[8] LI Yang, LIU Yong-he, WANG Xi-yue, WANG Hai-lin. SPATIAL-TEMPORAL CHARACTERISTICS OF PM2.5 AND PM10 AND THEIR RELATIONSHIPS WITH METEOROLOGICAL FACTORS IN JIAOZUO, HENAN [J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 44-53. doi: 10.13205/j.hjgc.202209006
[9] HUANG Chun-tao, FAN Dong-ping, LU Ji-fu, LIAO Qi-feng. PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL [J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 135-140. doi: 10.13205/j.hjgc.202112020
[10] YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING [J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
[11] WANG Xue-mei, WANG Feng-wen, CHEN Tao, ZHANG Qing-guo, JIANG Yue-lin. PM2.5 CONCENTRATION PREDICTION AND UNCERTAINTY ANALYSIS BASED ON A COMPOSITE MODEL [J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 229-235. doi: 10.13205/j.hjgc.202008038
[12] ZHAO Wen-cheng, WANG Fang. ANALYSIS OF URBAN AIR QUALITY INDEX BASED ON MULTISCALE CROSS TREND SAMPLE ENTROPY [J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 91-98. doi: 10.13205/j.hjgc.202002013
[13] WEI Wen-jing, XIE Bing-geng, ZHOU Kai-chun, LI Xiao-qing. RESEARCH ON TEMPORAL AND SPATIAL VARIATIONS OF ATMOSPHERIC PM2.5 AND PM10 AND THE INFLUENCING FACTORS IN SHANDONG, CHINA DURING 2013—2018 [J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 103-111. doi: 10.13205/j.hjgc.202012018
[17] Ye Ming Wang Gongzheng Su Guimei Mo Runyang Hu Jing, . PREPARATION AND APPLICATION OF FUNCTIONAL MAGNETIC NANOCOMPOSITE [J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 66-71. doi: 10.13205/j.hjgc.201510015
[18] Zhang Lihua, Wu Jiechun, Bao Yuhai, Xu Ri, Xu Kun. THE ANALYSIS OF POLLUTION LEVEL OF PARTICLES PM10 AND PM2. 5 IN WUHAN AND XI'AN [J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 73-76. doi: 10.13205/j.hjgc.201503015
Cited by Periodical cited type(3) 1. 李恺. 城市管理中空气重污染的影响及应急预案制定研究. 环境科学与管理. 2023(12): 11-14+29 . 2. 崔爱伟,苗纯萍,何欢,熊在平,胡远满,陈玮. 基于移动观测的城市街道峡谷大气污染物时空分布特征. 生态学杂志. 2022(10): 2035-2042 . 3. 高琦,郭新成,孟妮娜,王利,丁慧兰. 京津冀气溶胶时空变化特征及潜在来源分析. 科学技术与工程. 2021(30): 13185-13195 .
Other cited types(3)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 10 20 30 40 50
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 9.1 % FULLTEXT : 9.1 % META : 88.0 % META : 88.0 % PDF : 2.9 % PDF : 2.9 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 16.7 % 其他 : 16.7 % 其他 : 0.2 % 其他 : 0.2 % China : 0.4 % China : 0.4 % [] : 0.7 % [] : 0.7 % 上海 : 2.2 % 上海 : 2.2 % 东莞 : 0.7 % 东莞 : 0.7 % 临汾 : 0.9 % 临汾 : 0.9 % 北京 : 3.1 % 北京 : 3.1 % 南京 : 0.2 % 南京 : 0.2 % 南昌 : 0.7 % 南昌 : 0.7 % 南通 : 0.9 % 南通 : 0.9 % 台中 : 0.4 % 台中 : 0.4 % 台州 : 0.7 % 台州 : 0.7 % 吕梁 : 0.2 % 吕梁 : 0.2 % 嘉兴 : 0.2 % 嘉兴 : 0.2 % 大同 : 0.2 % 大同 : 0.2 % 天津 : 1.6 % 天津 : 1.6 % 太原 : 0.2 % 太原 : 0.2 % 宜宾 : 0.4 % 宜宾 : 0.4 % 常德 : 0.2 % 常德 : 0.2 % 广州 : 0.2 % 广州 : 0.2 % 弗吉 : 0.2 % 弗吉 : 0.2 % 张家口 : 0.4 % 张家口 : 0.4 % 德黑兰 : 0.7 % 德黑兰 : 0.7 % 成都 : 0.9 % 成都 : 0.9 % 拉贾斯坦邦 : 0.2 % 拉贾斯坦邦 : 0.2 % 文山壮族苗族自治州 : 0.2 % 文山壮族苗族自治州 : 0.2 % 昆明 : 0.9 % 昆明 : 0.9 % 晋城 : 0.4 % 晋城 : 0.4 % 朝阳 : 0.2 % 朝阳 : 0.2 % 杭州 : 0.4 % 杭州 : 0.4 % 武汉 : 0.7 % 武汉 : 0.7 % 济源 : 0.4 % 济源 : 0.4 % 淮安 : 0.2 % 淮安 : 0.2 % 温州 : 0.2 % 温州 : 0.2 % 湖州 : 1.6 % 湖州 : 1.6 % 漯河 : 0.2 % 漯河 : 0.2 % 石家庄 : 0.2 % 石家庄 : 0.2 % 秦皇岛 : 0.4 % 秦皇岛 : 0.4 % 绵阳 : 0.2 % 绵阳 : 0.2 % 芒廷维尤 : 46.3 % 芒廷维尤 : 46.3 % 芝加哥 : 0.9 % 芝加哥 : 0.9 % 苏州 : 0.9 % 苏州 : 0.9 % 衡阳 : 0.2 % 衡阳 : 0.2 % 衢州 : 1.3 % 衢州 : 1.3 % 西宁 : 4.5 % 西宁 : 4.5 % 西安 : 0.4 % 西安 : 0.4 % 西雅图 : 0.7 % 西雅图 : 0.7 % 贵阳 : 0.2 % 贵阳 : 0.2 % 运城 : 1.3 % 运城 : 1.3 % 遵义 : 0.2 % 遵义 : 0.2 % 邯郸 : 0.4 % 邯郸 : 0.4 % 郑州 : 1.1 % 郑州 : 1.1 % 重庆 : 0.7 % 重庆 : 0.7 % 银川 : 0.4 % 银川 : 0.4 % 长治 : 0.2 % 长治 : 0.2 % 其他 其他 China [] 上海 东莞 临汾 北京 南京 南昌 南通 台中 台州 吕梁 嘉兴 大同 天津 太原 宜宾 常德 广州 弗吉 张家口 德黑兰 成都 拉贾斯坦邦 文山壮族苗族自治州 昆明 晋城 朝阳 杭州 武汉 济源 淮安 温州 湖州 漯河 石家庄 秦皇岛 绵阳 芒廷维尤 芝加哥 苏州 衡阳 衢州 西宁 西安 西雅图 贵阳 运城 遵义 邯郸 郑州 重庆 银川 长治