Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YUAN Jian-ye, NAN Xin-yuan, CAI Xin, LI Cheng-rong. GARBAGE IMAGE CLASSIFICATION BY LIGHTWEIGHT RESIDUAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 110-115. doi: 10.13205/j.hjgc.202102017
Citation: BAI Ying-jie, ZENG Ke, GAO Jing-qing, WANG Yan-peng, LI Jia, WANG Lan-qi. A COMPARATIVE STUDY ON ASSESSMENT TECHNOLOGY OF POLLUTANTS DISCHARGE PERMIT LIMITS BETWEEN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 16-20,26. doi: 10.13205/j.hjgc.202102003

A COMPARATIVE STUDY ON ASSESSMENT TECHNOLOGY OF POLLUTANTS DISCHARGE PERMIT LIMITS BETWEEN CHINA AND THE UNITED STATES

doi: 10.13205/j.hjgc.202102003
  • Received Date: 2019-06-21
    Available Online: 2021-07-19
  • As China vigorously promotes the implementation of pollutant discharge permit system nationwide, emission permit limits become increasingly important as the key point of pollutant discharge permit.This paper focused on the comparison of the practice and research status of the pollution permit limit approval technology in China and the United States from three aspects:verification methods based on legal basis, technologies and water quality. Comparing the characteristics and experiences between the US and China technology for the verification of emission permit limits, this paper summarized the problems existing in China's corresponding technologies. Such as the imperfect laws and regulations, the incomplete technical guidance documents, low accuracy of technology-based technology for the verification of emission permit limits, and lack of technology for the verification of emission permit limits based on water quality. Finally, it provided suggestions for the improvement of emission permit limit verification technology in China.
  • [1]
    张建宇.美国排污许可制度管理经验:以水污染控制许可证为例[J].环境影响评价,2016,38(2):23-26.
    [2]
    孙彩萍,刘孝富,孙启宏,等.美国固定源监管机制对我国排污许可证实施的借鉴[J].环境工程技术学报,2018,8(2):191-199.
    [3]
    梁忠,汪劲.我国排污许可制度的立法定位与立法需求:对制定排污许可管理条例的法律思考(续)[J].环境影响评价,2018,40(2):20-23.
    [4]
    曹俊.改革,排污许可制度的精神特质:关于排污许可制度改革的九个关键词[J]. 中国生态文明, 2018(1):23-32.
    [5]
    COPELAND C. Clean Water Act:A Summary of the Law[M]. Washington D.C.:Congressional Research Service Reports, 2012.
    [6]
    US EPA, OW, OWM, Water Permits Division. NPDES Permit Writers' Manual[M].Washington D.C:Water Permits Division Office of Wastewater Management, 2010.
    [7]
    WALL T M.EPA's deaft stratecy for National Clean Water Industrial Regulations and the 2004/2005 Effluent Guidelines Plan[J]. Proceedings of the Water Environment Federation, 2004,6:467-469.
    [8]
    US EPA. Technical Support Document for Water Quality-Based Toxic Control[M].Washington DC,1991.
    [9]
    JULIAN II P,PAYNE G, XUE S K. Water Quality in the Everglades Protection Area[M].South Florida:South Florida Water Management District, 2015.
    [10]
    RAGAS A M J, SCHEREN P A G M, KONTERMAN H I, et al. Effluent standards for developing countries:combining the technology-and water quality-based approach[J]. Water Science & Technology, 2005, 52(9):133-144.
    [11]
    FARZIN Y H. The effects of emissions standards on industry[J]. Journal of Regulatory Economics, 2003, 24(3):315-327.
    [12]
    US EPA. Learn About Effluent Guidelines[EB/OL]. https://www.epa.gov/eg/learn-about-effluent-guidelines. 2018-09-19.
    [13]
    TABLER S.EPA's Program for establishing national emission standards for hazardous air pollutants[J]. Air Repair, 1984, 34(5):532-536.
    [14]
    US EPA, Office of Water Enforcement and Permit, Office of Water Regulations and Standards. Technical Support Document for Water Quality-Based Toxics Control[M]. Washington DC:Office of Water, 1991.
    [15]
    EPA.Technology-based Effluent Limitations for Non-POTWs[EB/OL].https://www.epa.gov/npdes/outreach_files/web-based_train. 2014-07-22.
    [16]
    开根森,颜彭莉.美国水污染排放限值有何不同?[J].环境经济,2015(ZC):21.
    [17]
    RAGAS A M J, LEUVEN R S E W. Modelling of water quality-based emission limits for industrial discharges in rivers[J]. Water Science & Technology, 1999, 39(4):185-192.
    [18]
    HANSON D A. Cost-effective NPDES permitting strategies[J]. Pollution Engigeering, 1995,27(9):34-36.
    [19]
    US EPA. Guidance for water-quality-based decisions:the TMDL process[M]. Washington DC:Office of Water, 1991.
    [20]
    BRANDES R, NEWTON B, OWENS M, et al. Draft Technical Support Document for Water Quality-Based Toxics Control[M]. Washington DC:Office of Water, 1985.
    [21]
    US EPA. Technical Support Document Derivation of the Water Quality Based Effluent Limit (WQBEL) for Phosphorus in Discharges to the Everglades Protection Area[EB/OL]. https://www.epa.gov/sites/production/files/2014-01/documents/attachmentgforad, 2010-9-3.
    [22]
    魏玉霞,张明慧,胡林林,等.基于水污染物排放标准的排污许可总量计算方法及应用性探讨[J].环境工程技术学报,2016,6(6):629-635.
    [23]
    梁础文.中美炼钢行业污染物排放限值研究[J].工程建设与设计,2016(1):90-93.
    [24]
    柴西龙,邹世英,李元实,等.环境影响评价与排污许可制度衔接研究[J].环境影响评价,2016,38(6):25-27

    ,35.
    [25]
    梁忠. 中国排污许可立法工作应提挡加速[J]. 世界环境, 2017(6):62.
    [26]
    邹世英,柴西龙,杜蕴慧,等.排污许可制度改革的技术支撑体系[J].环境影响评价,2018,40(1):1-5.
    [27]
    吕晓君,吴铁,程曦,等.排污许可制技术支撑体系研究[J].环境保护,2018,46(8):27-30.
    [28]
    徐力,周其胤,吴蕾,等.安徽淮河流域造纸工业水污染排放限制的探究[J].广东化工,2018,45(2):150-152

    ,156.
    [29]
    张玮,白金.排污许可证中污染物排污量核算方法分析[J].环境与发展,2014,26(增刊1):119-122.
    [30]
    王淑一,雷坤,邓义祥,等.企业水污染源基于技术的排污许可限值确定方法及其案例研究[J].环境科学学报,2016,36(12):4563-4569.
    [31]
    苗永刚,赵玉强,荆勇,等.排污许可量核算方法与体系研究:以沈阳市为例[J].环境保护科学,2016,42(5):45-50.
    [32]
    王淑一,雷坤,邓义祥,等.基于不同时间周期排放量的排污许可限值[J].环境科学研究,2016,29(2):299-305.
    [33]
    孙严,宋新山,邓义祥,等.污染物排放波动特征及对排污许可限值的影响[J].环境保护科学,2017,43(4):17-20

    ,42.
    [34]
    刘红磊,李慧,倪颀业,等.工业园区企业排水水质调研及园区纳管常规指标限值雏议[J].给水排水,2016,52(12):65-70.
    [35]
    张一帆,雷坤,邓义祥,等.应用等效质量方法确定间接排放企业的排污许可限值:以常州市为例[J].环境工程技术学报,2017,7(6):754-758.
    [36]
    姜秋俚,王鹏飞,韩天放,等.基于Petri网与BAT的造纸行业排放限值仿真[J].东北大学学报(自然科学版),2016,37(5):702-705,725.
    [37]
    孟宪荣,金文龙,李勤.工业废水锑排放标准限值的制订[J].环境监测管理与技术,2016,28(4):57-60.
    [38]
    纪志博,王文杰,刘孝富,等.流域畜禽养殖排污许可方案设计:以柘溪水库为例[J].环境工程技术学报,2017,7(5):621-628.
    [39]
    孟伟,王海燕,王业耀.流域水质目标管理技术研究(Ⅳ):控制单元的水污染物排放限值与削减技术评估[J].环境科学研究,2008,21(2):1-9.
    [40]
    魏文龙,曾思育,杜鹏飞,等.一种兼顾目标总量和容量总量的水污染物排放限值确定方法[J].中国环境科学,2014,34(1):136-142.
    [41]
    乔飞,雷坤,邓义祥,等. 基于水质达标的污染源排污许可限值确定方法:CN106202950A[P]. 2016-12-07.
  • Relative Articles

    [1]XU Li, ZHOU Lawu, LI Gaojia. A RECYCLABLE WASTE SORTING SYSTEM BASED ON AN IMPROVED INCEPTION RESNET V2 NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 233-241. doi: 10.13205/j.hjgc.202404027
    [2]GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
    [3]QIAN Xu, CHEN Pengpeng, XIE Pengcheng, GE Chunling, LUO Wei. AN INTELLIGENT CLASSIFICATION INFRASTRUCTURE SYSTEM FOR COMMUNITY SOLID WASTE: DESIGN AND IMPLEMENTING SCHEME[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 239-246. doi: 10.13205/j.hjgc.202402028
    [4]XIAO Lizhong, HU Fan. GARBAGE DETECTION BASED ON LGD-YOLO HIGH PRECISION LIGHTWEIGHT OBJECT DETECTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 169-177. doi: 10.13205/j.hjgc.202406020
    [5]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [6]XIA Jingming, XU Zifeng, TAN Lin. APPLICATION RESEARCH OF LIGHTWEIGHT NETWORK LW-GCNet IN GARBAGE CLASSIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 173-180. doi: 10.13205/j.hjgc.202302023
    [7]GUO Zirui, CHEN Zhiqiang, CHI Riguang, SHEN Aihua. PREDICTION OF POLYHYDROXYALKANOATE (PHA) PRODUCTION UTILIZING FOOD WASTE BASED ON GA-BP NEURAL NETWORK METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 166-173. doi: 10.13205/j.hjgc.202204024
    [8]WANG Wensheng, NIAN Chengxu, ZHANG Chao, YAN Rupeng, WU Xinquan, ZHANG Xinbo. DESIGN OF AUTOMATIC GARBAGE SORTING BIN FOR NON-RESIDENTIAL AREA BASED ON YOLO v5[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 159-165. doi: 10.13205/j.hjgc.202203024
    [9]WANG Jie, GU Weihua, CHEN Zehui, SONG Erxi, SHENG Nan, YAO Wei, WANG Jingwei, QIAN Yichao. ANALYSIS OF PRACTICAL EFFECTS, PROBLEMS AND COUNTERMEASURES OF DOMESTIC WASTE CLASSIFICATION:A CASE STUDY IN ZHILI TOWN, HUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 188-193. doi: 10.13205/j.hjgc.202203028
    [10]ZHANG Tong, ZHANG Liqiu, FENG Li, LIU Yongze, DU Ziwen. ANALYSIS OF CHANGES IN CHARACTERISTICS OF KITCHEN WASTE AFTER SORTING AND DOMESTIC WASTE BEFORE SORTING IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 22-28. doi: 10.13205/j.hjgc.202212004
    [11]HE Jia-ni, LIU Yi-li, LI Zhu-lin, QIU Zhao-wen. ENERGY CONSUMPTION ANALYSIS OF MUNICIPAL SOLID WASTE CLASSIFIED TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 136-142. doi: 10.13205/j.hjgc.202110019
    [12]YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016
    [13]REN Zhong-shan, CHEN Ying, WANG Yong-ming, TENG Jing-jie, QIAO Peng. ANALYSIS OF INFLUENCE OF DOMESTIC WASTE CLASSIFICATION ON DEVELOPMENT OF WASTE INCINERATION POWER GENERATION INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 150-153,206. doi: 10.13205/j.hjgc.202106022
    [14]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
    [15]LI Qiang, LIU Yang, SHEN Ling. NETWORK LAYOUT OF DYNAMIC CONSTRUCTION WASTE DISPOSAL FACILITIES BASED ON COMPLEX NETWORK THEORY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 130-137. doi: 10.13205/j.hjgc.202012022
    [16]SUN Xiao-jie, WANG Chun-lian, LI Qian, ZHANG Hong-xia, YE Yu-hang. DEVELOPMENT AND EVOLUTION OF CHINA’S DOMESTIC WASTE CLASSIFICATION POLICY SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 65-70. doi: 10.13205/j.hjgc.202008011
  • Cited by

    Periodical cited type(18)

    1. 张彦博,郭小燕,黄海钤,于帅卿. 一种基于VovNet的轻量级农作物虫害分类模型. 热带农业工程. 2024(01): 18-24 .
    2. 黄乐程. 基于深度学习的生活垃圾分类方法现状与展望. 信息技术与信息化. 2024(03): 115-119 .
    3. 田建杰,尚玉龙. 基于YOLOv5图像识别的垃圾自动分类系统的设计. 电脑知识与技术. 2024(08): 5-7 .
    4. 徐丽,周腊吾,李高嘉. 基于改进Inception ResNet V2网络的可回收垃圾分拣系统. 环境工程. 2024(04): 233-241 . 本站查看
    5. 施玉娟. 融合卷积注意力与Transformer的垃圾图像检测. 九江学院学报(自然科学版). 2023(01): 81-88 .
    6. 李洋,苟刚. 基于改进YOLOX的轻量型垃圾分类检测方法. 广西师范大学学报(自然科学版). 2023(03): 80-90 .
    7. 黄日辰,陈晓龙. 基于高效的动态网络垃圾图像分类模型研究. 金华职业技术学院学报. 2023(03): 60-67 .
    8. 马旭,杨立东,郭勇,赵艳锋. 改进DeepLabV3+网络的露天矿挡墙分割方法. 电子测量技术. 2023(10): 92-97 .
    9. 袁斌,张超军,李晨. 基于MobileViT轻量级视觉模型的垃圾自动分类系统设计. 包装工程. 2023(23): 208-215 .
    10. 董红召,方浩杰,张楠. 旋转框定位的多尺度再生物品目标检测算法. 浙江大学学报(工学版). 2022(01): 16-25 .
    11. 李金玉,陈晓雷,张爱华,李策,林冬梅. 基于深度学习的垃圾分类方法综述. 计算机工程. 2022(02): 1-9 .
    12. 王文胜,年诚旭,张超,阎如鹏,吴鑫全,张歆博. 基于YOLO v5模型的非住宅区自动垃圾分类箱设计. 环境工程. 2022(03): 159-165 . 本站查看
    13. 桑一梅,陆萍. 基于深度卷积神经网络的自动垃圾分类. 甘肃科技纵横. 2022(03): 1-3+34 .
    14. 刘后胜,张洋,陶健林. 基于优化改进的Xception模型的垃圾图片分类. 黄山学院学报. 2022(03): 30-32 .
    15. 徐明明,高丙朋,黄家興. 改进残差网络的轻量级塑料垃圾分类研究. 现代电子技术. 2022(17): 95-99 .
    16. 孟德尧,吴荣海,杨邓奇. 基于集成学习的有害垃圾自动识别方法研究. 现代计算机. 2022(16): 38-42 .
    17. 于帅卿,郭小燕. 一种轻量级苜蓿虫害分类模型. 软件导刊. 2022(11): 144-151 .
    18. 陈智超,焦海宁,杨杰,曾华福. 基于改进MobileNet v2的垃圾图像分类算法. 浙江大学学报(工学版). 2021(08): 1490-1499 .

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.8 %FULLTEXT: 20.8 %META: 76.6 %META: 76.6 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.8 %其他: 15.8 %其他: 0.2 %其他: 0.2 %Australia: 0.3 %Australia: 0.3 %China: 0.5 %China: 0.5 %Matawan: 1.0 %Matawan: 1.0 %[]: 1.4 %[]: 1.4 %东莞: 0.3 %东莞: 0.3 %临汾: 0.2 %临汾: 0.2 %丽水: 0.2 %丽水: 0.2 %北京: 0.7 %北京: 0.7 %十堰: 0.2 %十堰: 0.2 %南京: 0.5 %南京: 0.5 %南昌: 0.2 %南昌: 0.2 %南通: 0.7 %南通: 0.7 %台州: 0.2 %台州: 0.2 %合肥: 0.7 %合肥: 0.7 %周口: 0.2 %周口: 0.2 %唐山: 0.3 %唐山: 0.3 %喀什: 0.2 %喀什: 0.2 %多哈: 0.5 %多哈: 0.5 %大理白族自治州: 0.3 %大理白族自治州: 0.3 %大连: 0.2 %大连: 0.2 %大阪: 0.2 %大阪: 0.2 %天津: 0.5 %天津: 0.5 %太原: 0.3 %太原: 0.3 %安康: 0.2 %安康: 0.2 %宜春: 0.3 %宜春: 0.3 %宣城: 0.3 %宣城: 0.3 %常德: 0.2 %常德: 0.2 %广州: 0.5 %广州: 0.5 %廊坊: 0.2 %廊坊: 0.2 %张家口: 0.3 %张家口: 0.3 %德州: 0.2 %德州: 0.2 %成都: 0.5 %成都: 0.5 %扬州: 0.7 %扬州: 0.7 %新北: 0.2 %新北: 0.2 %昆明: 0.5 %昆明: 0.5 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.2 %朝阳: 0.2 %杭州: 2.9 %杭州: 2.9 %武汉: 1.9 %武汉: 1.9 %沧州: 0.5 %沧州: 0.5 %法尔肯施泰因: 1.0 %法尔肯施泰因: 1.0 %泗水: 0.5 %泗水: 0.5 %济南: 0.9 %济南: 0.9 %济源: 0.3 %济源: 0.3 %淮南: 0.2 %淮南: 0.2 %深圳: 0.5 %深圳: 0.5 %湖州: 0.2 %湖州: 0.2 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 44.4 %芒廷维尤: 44.4 %芝加哥: 3.6 %芝加哥: 3.6 %苏州: 0.2 %苏州: 0.2 %衢州: 0.7 %衢州: 0.7 %西宁: 4.9 %西宁: 4.9 %西安: 0.3 %西安: 0.3 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.7 %运城: 1.7 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.5 %郑州: 0.5 %重庆: 0.2 %重庆: 0.2 %金华: 0.7 %金华: 0.7 %长治: 0.2 %长治: 0.2 %雅安: 0.2 %雅安: 0.2 %青岛: 1.2 %青岛: 1.2 %其他其他AustraliaChinaMatawan[]东莞临汾丽水北京十堰南京南昌南通台州合肥周口唐山喀什多哈大理白族自治州大连大阪天津太原安康宜春宣城常德广州廊坊张家口德州成都扬州新北昆明晋城朝阳杭州武汉沧州法尔肯施泰因泗水济南济源淮南深圳湖州漯河石家庄秦皇岛芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州重庆金华长治雅安青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (160) PDF downloads(16) Cited by(31)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return