Citation: | GUAN Meng-sha, LUO Li-yu, SHEN Si-wen, ZHOU Li-song, QIU Jiang-kun, LI Rui-hua. ADSORPTION PERFORMANCE AND MECHANISM OF NATURAL PYRRHOTITE FOR As (Ⅲ) IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 33-40. doi: 10.13205/j.hjgc.202102006 |
[1] |
SHARMA M K, CHOUBEY V K. Groundwater pollution:an overview[J]. Social Science Electronic Publishing, 2011,3(4):64-76.
|
[2] |
WANG W Y, YANG L S, HOU S F, et al. Prevention of endemic arsenism with selenium[J]. Current Science, 2001, 81(9):1215-1218.
|
[3] |
NG J C, WANG J, SHRAIM A. A global health problem caused by arsenic from natural sources[J]. Chemosphere, 2003, 52(9):1353-1359.
|
[4] |
CECILIA G M, BLANES P S, BUCHHAMER E E, et al. Assessment of heavy metals concentration in arsenic contaminated groundwater of the Chaco Plain, Argentina[J]. ISRN Environmental Chemistry, 2013,22/23:1-12.
|
[5] |
FAROOQ S H, CHANDRASEKHARAM D, NORRA S, et al. Temporal variations in arsenic concentration in the groundwater of Murshidabad district, west Bengal, India[J]. Environmental Earth Sciences, 2009, 62(2):223-232.
|
[6] |
ROMIĆ Z, HABUDA-STANIĆ M, BRANKICAKALAJDŽIĆ, et al. Arsenic distribution, concentration and speciation in groundwater of the Osijek area, eastern Croatia[J]. Applied Geochemistry, 2011, 26(1):37-44.
|
[7] |
何薪, 马腾, 王焰新, 等. 内蒙古河套平原高砷地下水赋存环境特征[J]. 中国地质, 2010, 37(3):781-788.
|
[8] |
WHO. Guidelines for drinking-water quality:fourth edition incorporating the frst addendum[R]. Geneva, 2017.
|
[9] |
陈桂霞, 胡承志, 朱灵峰, 等. 铝盐混凝除砷影响因素及机制研究[J]. 环境科学, 2013, 34(4):164-169.
|
[10] |
MENG C Q, MAO Q M, LUO L, et al. Performance and mechanism of As(Ⅲ) removal from water using Fe-Al bimetallic material[J]. Separation and Purification Technology, 2018, 191:314-321.
|
[11] |
NIAZI N K, BURTON E D. Arsenic sorption to nanoparticulate mackinawite (FeS):an examination of phosphate competition[J]. Environmental Pollution, 2016, 218:111-117.
|
[12] |
BAKSHI S, BANIK C, RATHKE S J, et al. Arsenic sorption on zero-valent iron-biochar complexes[J]. Water Research, 2018, 137:153-163.
|
[13] |
王建燕, 张传巧, 陈静, 等. 新型铁铜锰复合氧化物颗粒吸附剂As(Ⅲ)吸附行为与机制研究[J]. 环境科学学报, 2019, 39(8):2575-2585.
|
[14] |
SHAN C, TONG M P. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide[J]. Water Research, 2013, 47(10):3411-3421.
|
[15] |
邵金秋, 温其谦, 阎秀兰, 等. 天然含铁矿物对砷的吸附效果及机制[J]. 环境科学, 2019, 40(9):4072-4080.
|
[16] |
郭乐, 王玉霞, 刘玉灿, 等. 紫外光协同TiCl4去除水中As(Ⅲ)效能及动力学[J]. 水处理技术, 2019, 45(1):75-79.
|
[17] |
朱小丽, 刘红, 范先媛, 等. Fenton氧化-絮凝耦合去除水中As(Ⅲ)的机理[J]. 环境工程学报, 2012,6(10):3603-3607.
|
[18] |
李旺旺, 毕亚凡, 孙侃. 硫铁矿制酸过程的废稀酸中砷及重金属去除研究[J]. 工业用水与废水, 2015, 46(1):32-35.
|
[19] |
LI R H, KELLY C, KEEGAN R, et al. Phosphorus removal from wastewater using natural pyrrhotite[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 427:13-18.
|
[20] |
WOLTHERS M, BUTLER I B, RICKARD D. Influence of arsenic on iron sulfide transformations[J]. Chemical Geology, 2007, 236(3/4):217-227.
|
[21] |
赵凯, 郭华明, 李媛, 等. 天然菱铁矿改性及强化除砷研究[J]. 环境科学, 2012, 33(2):459-468.
|
[22] |
BHATTACHARYYA K G, SHARMA A. Kinetics and thermodynamics of methylene blue adsorption on Neem (Azadirachta indica) leaf powder[J]. Dyes and Pigments, 2005, 65(1):51-59.
|
[23] |
HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465.
|
[24] |
LATA S, PRABHAKAR R, ADAK A, et al. As(Ⅴ) removal using biochar produced from an agricultural waste and prediction of removal efficiency using multiple regression analysis[J]. Environmental Science & Pollution Research, 2019, 26(5):32175-32188.
|
[25] |
TANGDE V M, PRAJAPATI S S, MANDAL B B, et al. Study of kinetics and thermodynamics of removal of phosphate from aqueous solution using activated red mud[J]. International Journal of Environmental Research, 2017, 11(1):39-47.
|
[26] |
赵振国. 吸附作用应用原理[M]. 北京:化学工业出版社, 2005.
|
[27] |
郑景华, 王宇, 王聪, 等. 磁性生物炭对As(Ⅲ)的吸附行为研究[J]. 离子交换与吸附, 2018, 34(2):116-126.
|
[28] |
AMMENDOLA P, RAGANATI F, CHIRONE R. CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed:thermodynamics and kinetics[J]. Chemical Engineering Journal, 2017, 322:302-313.
|
[29] |
YOSHII K, KOTANI T, MURAYAMA N, et al. Oxidative adsorption of inorganic arsenite (As(Ⅲ)) with γ-Al2O3 and MnO2[J]. Technology Reports of Kansai University, 2014, 56:57-64.
|
[30] |
纪冬丽, 孟凡生, 王业耀, 等. 废铁屑吸附水中As(Ⅲ)试验研究[J]. 环境工程, 2016, 34(增刊1):66-71.
|
[31] |
HUSSAIN S, AZIZ H A, ISA M H, et al. Orthophosphate removal from domestic wastewater using limestone and granular activated carbon[J]. Desalination, 2011, 271(1/2/3):265-272.
|
[32] |
KONG Y L, KANG J, SHEN J M, et al. Influence of humic acid on the removal of arsenate and arsenic by ferric chloride:effects of pH, As/Fe ratio, initial As concentration, and co-existing solutes[J]. Environmental Science & Pollution Research, 2017, 24(3):2381-2393.
|
[33] |
刘卓, 张小梅, 肖才林, 等. 利用天然磁黄铁矿去除水中As(Ⅴ)的研究[J]. 环境科学学报, 2016, 36(10):3701-3708.
|
[34] |
SCHAUFUB A, NESBITT H W, KARTIO I. Reactivity of surface chemical states on fractured pyrite[J]. Surface Science, 1998, 411(3):321-328.
|
[35] |
ROMANCHENKO, ALEXANDER, LIKHATSKI, et al. X-ray photoelectron spectroscopy (XPS) study of the products formed on sulfide minerals upon the interaction with aqueous platinum (Ⅳ) chloride complexes[J]. Minerals, 2018, 8(12):578.
|
[36] |
DONATO P D, MUSTIN C, BENOIT R, et al. Spatial distribution of iron and sulphur species on the surface of pyrite[J]. Applied Surface Science, 1993, 68(1):81-93.
|
[37] |
BERA S, PRINCE A A M, VELMURUGAN S, et al. Formation of zinc ferrite by solid-state reaction and its characterization by XRD and XPS[J]. Journal of Materials Science, 2001, 36(22):5379-5384.
|
[38] |
ABDELSAMAD H S, WATSON P R. An XPS study of the adsorption of chromate on goethite (α-FeOOH)[J]. Applied Surface Science, 1997, 108(3):371-377.
|
[39] |
DRAGOSLAV, BUDIMIROVIC', ZLATE, et al. Efficient As(Ⅴ) removal by α-FeOOH and α-FeOOH/α-MnO2 embedded PEG-6-arm functionalized multiwall carbon nanotubes[J]. Chemical Engineering Research and Design, 2017, 119:75-86.
|
[40] |
REN D S, WANG W, Li Y C, et al. Studies of oxidation on GaAs (100) surface by XPS[J]. Chinese Journal of Chemical Physics, 2004, 17(1):87-90.
|
[41] |
GROSVENOR A P, CAVELL R G, MAR A. Next-nearest neighbour contributions to the XPS binding energies and XANES absorption energies of P and As in transition-metal arsenide phosphides MAs1-yP<i>y having the MnP-type structure[J]. Journal of Solid State Chemistry, 2008, 181(10):2549-2558.
|
[42] |
孙天一, 赵志伟, 时文歆, 等. 磁性CeO2-Fe3O4复合材料光催化/吸附去除水中As(Ⅲ)[J]. 环境科学学报, 2018, 38(8):3108-3117.
|
[43] |
SKINNER W M, NESBITT H W, PRATT A R. XPS identification of bulk hole defects and itinerant Fe 3d electrons in natural troilite (FeS)[J]. Geochimica et Cosmochimica Acta, 2004, 68(10):2259-2263.
|