Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DU Bo-ying, MA Yun-feng, WANG Qi, WANG Yue, SHI Xiao-fei, WANG Shuai, BIAN Yu-shan. ANALYSIS OF DIFFUSION CHARACTERISTICS AND FORMATION CAUSES OF PM2.5 IN SHENYANG USING WRF-CHEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 89-97,104. doi: 10.13205/j.hjgc.202102014
Citation: DU Bo-ying, MA Yun-feng, WANG Qi, WANG Yue, SHI Xiao-fei, WANG Shuai, BIAN Yu-shan. ANALYSIS OF DIFFUSION CHARACTERISTICS AND FORMATION CAUSES OF PM2.5 IN SHENYANG USING WRF-CHEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 89-97,104. doi: 10.13205/j.hjgc.202102014

ANALYSIS OF DIFFUSION CHARACTERISTICS AND FORMATION CAUSES OF PM2.5 IN SHENYANG USING WRF-CHEM

doi: 10.13205/j.hjgc.202102014
  • Received Date: 2019-07-17
    Available Online: 2021-07-19
  • In recent years, the quality of the atmospheric environment in many cities has become increasingly severe, which is not only related to the emission of pollutants from local sources, but also affected by regional transportation. Taking an air pollution process as an example in Shenyang, Liaoning in January 2017, the evolution process and meteorological impact were analyzed. Firstly, the WRF-HYSPLIT model was used to calculate the backward trajectories, and the WRF-Chem air quality model was used to calculate the ground surface PM2.5 particle diffusion process. At the same time, the surface synoptic map and isobaric surface in the study area was analyzed and simulated. The results showed that the air mass trajectory pathways in January 2017 could be divided into 5 types, in which the trajectory cluster 1 in the west direction had the fastest moving speed, but the pollution value and frequency were lower. And the transport pathways numbered 2 and 3 were similar originating in the Inner Mongolia Autonomous Region and moving to the southeast direction to the target area. And these trajectories carried low PM2.5 value of 45.47, 67.97 μg/m3, with frequency of 24.19% and 15.32%, respectively. The cluster 4 showed that the local source transports accounted for 33.03% with the largest pollution level, which was 121.66 μg/m3. The trajectory cluster 5 in the southwest transport pathway had a frequency of 14.53% and the PM2.5 value of 105.5 μg/m3. The results of air quality model were consistent with the trajectories calculation results:the southwest and the northeast transport pathways led to a particulate matter increase in the target area. Heavy pollution events were more likely to occur due to the impact of Northeast China Topographic Trough and Changbai Mountain Small High Pressure formed by topographical dynamics and thermal factors.
  • [1]
    HUANG R J, ZHANG Y L, CARLO B, et al. High secondary aerosol contribution to particulate pollution during haze events in china[J]. Nature, 2014, 514(7521):218-222.
    [2]
    MIAO Y C, GUO J P, LIU S H, et al. Impacts of synoptic condition and planetary boundary layer structure on the trans-boundary aerosol transport from beijing-tianjin-hebei region to northeast china[J]. Atmospheric Environment, 2018, 181:1-11.
    [3]
    LI X L, MA Y J, WANG Y F, et al. Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast china[J]. Atmospheric Research, 2017, 198:185-193.
    [4]
    杨洪斌, 李元宜, 邹旭东. 辽宁空气中度污染和重污染天气类型分析[J]. 气象与环境学报, 2009, 25(6):15-17.
    [5]
    MA Y J, LIU N W, WANG Y F. Distribution characteristics of air pollution cause of serious pollution in the mid cities of liaoning province[J]. Urban Environment & Urban Ecology, 2006, 6:32-35.
    [6]
    YU F, LI H B, YU H Q, et al. Weather characteristics and simulation analysis on causes of air pollution in dalian[J]. China Environment Science, 2018, 38(10):3639-3646.
    [7]
    LI C, YUAN Z P, WU Y T, et al. Analysis of persistence and intensification mechanism of a heavy haze event in shenyang[J]. Research of Environmental Sciences, 2017, 30(3):349-358.
    [8]
    ZHANG L, GUO X M, ZHAO T L, et al. A modelling study of the terrain effects on haze pollution in the sichuan basin[J]. Atmospheric Environment, 2019, 196:77-85.
    [9]
    ZHANG Q. The influence of terrain and inversion layer on pollutant transfer over lanzhou city[J]. China Environment Science, 2001, 3(3):39-43.
    [10]
    LEE S, KIM J, CHOI M, et al. Analysis of long-range transboundary transport (lrtt) effect on korean aerosol pollution during the korus-aq campaign[J]. Atmospheric Environment, 2019, 204:53-67.
    [11]
    JUNG J, GHIM Y S, LYU Y S, et al. Quantification of regional contributions to fine particles at downwind areas under asian continental outflows during winter 2014[J]. Atmospheric Environment, 2019, 210:231-240.
    [12]
    MAHAPATRA P S, SINHA P R, BOOPATHY R, et al. Seasonal progression of atmospheric particulate matter over an urban coastal region in peninsular india:role of local meteorology and long-range transport[J]. Atmospheric Research, 2018, 199:145-158.
    [13]
    YE H, MA Y J, WANG X Q, et al. External influences in the haze episode in the central city group of liaoning:a case study[J]. Acta Scientiae Circumstantiae, 2013, 33(8):2115-2122.
    [14]
    SIDA Q. Reigonal transport of PM2.5 and air polluyion characteristics for liaoning province using models-3/cmaq[D]. Shenyang:Liaoning University, 2018.
    [15]
    刘闽. 燃放烟花爆竹对沈阳春节期间空气质量影响研究[J]. 环境保护与循环经济, 2018, 38(6):57-60.
    [16]
    MA Y J, WANG J S, WANG Y F, et al. Pollution characteristics of inhalable particles PM10 and PM2.5 in the city group of middle liaoning province[J]. Journal of Meteorology and Environment, 2008, 5(5):11-15.
    [17]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会环境空气质量标准:GB 3095-2012[S]. 北京:中国环境科学出版社, 2012.
    [18]
    DRAXLER R R, STUNDER B, ROLPH G, et al. Hysplit4 users guide[G]. 1999.
    [19]
    MA Y F, LU H, LIU H T. Trajectory calculation error assessment for HYSPLIT[J]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition), 2015, 7(1):86-91.
    [20]
    WANG F, CHEN D S, CHENG S Y, et al. Impacts of air pollutant transport based on air trajectory clustering[J]. Research of Environmental Sciences, 2009, 22(6):637-642.
    [21]
    ABDALMOGITH S S, HARRISON R M J A E. The use of trajectory cluster analysis to examine the long-range transport of secondary inorganic aerosol in the uk[J]. Atmospheric Environment, 2005, 39(35):6686-6695.
    [22]
    SIROIS A, BOTTENHEIM J W. Use of backward trajectories to interpret the 5-year record of pan and o3 ambient air concentrations at kejimkujik national park, nova scotia[J]. Journal of Geophysical Research Atmospheres, 1995, 100(D2):2867-2881.
    [23]
    GRELL G A. Fully coupled ‘online’ chemistry within the wrf model[J]. Atmospheric Environment, 2005, 37(39):6957-6975.
    [24]
    FAST J D, GUSTAFSON W I, EASTER R C, et al. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of houston using a fully coupled meteorology-chemistry-aerosol model[J]. Journal of Geophysical Research Atmospheres, 2006, 111(D21):3051-3030.
    [25]
    KEDIA S, CHERIAN R, ISLAM S, et al. Regional simulation of aerosol radiative effects and their influence on rainfall over india using wrfchem model[J]. Atmospheric Research, 2016, 182:232-242.
    [26]
    QIN H S, CHANG F Y, HAI B, et al. Numerical simulation of diurnal variation of major pollutants with WRF-CHEM model in tianjin[J]. China Environmental Science, 2008, 28(9):828-832.
    [27]
    ZHOU G Q, XIE Y, WU J B, et al. Wrf-chem based PM2.5 forecast and bias analysis over the east china region[J]. China Environmental Science, 2016, 36(8):2251-2259.
    [28]
    HE H, TIE X X, ZHANG Q, et al. Analysis of the causes of heavy aerosol pollution in Beijing, China:a case study with the wrf-chem model[J]. Particuology, 2015, 20(3):32-40.
    [29]
    ŽABKAR R, HONZAK L, SKOK G, et al. Evaluation of the high resolution wrf-chem air quality forecast and its comparison with statistical ozone predictions[J]. Geoscientific Model Development, 2015, 8(2):1029-1075.
    [30]
    MAR K A, OJHA N, POZZER A, et al. Ozone air quality simulations with WRF-CHEM (V3.5.1) over europe:model evaluation and chemical mechanism comparison[J]. Geoscientific Model Development, 2016, 9(10):3699-3728.
    [31]
    KELLER A, BURTSCHER H. Characterizing particulate emissions from wood burning appliances including secondary organic aerosol formation potential[J]. Journal of Aerosol Science, 2017, 114:21-30.
    [32]
    SONG M D, LIU X G, TAN Q W, et al. Characteristics and formation mechanism of persistent extreme haze pollution events in Chengdu, southwestern China[J]. Environmental Pollution, 2019, 251:1-12.
    [33]
    李宗恺. 空间污染气象学原理及应用[M]. 北京:气象出版社, 1985.
  • Relative Articles

    [1]WANG Na, YANG Xinyue, CAI Wentao, SUN Jiajing, MA Xiaoyan, ZHANG Yujiao. RELATIONSHIP BETWEEN PARAMETER σ2(k·ECx) AND INTERACTION OF MULTI-COMPONENT MIXTURES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 58-66. doi: 10.13205/j.hjgc.202403007
    [2]WEI Xiangnan, MA Yunfeng, BAO Huiyu, ZHAO Huijie, SUN Xuebin, WANG Shuai, HOU Le. CHARACTERISTICS ANALYSIS OF PM2.5 AND O3 POLLUTION IN SHENYANG CITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 73-82. doi: 10.13205/j.hjgc.202410010
    [3]ZHAO Hui-jie, MA Yun-feng, WANG Shuai, LIU Qi-yao, WEI Xiang-nan. CAUSE ANALYSIS OF A HEAVY PM2.5 POLLUTION PROCESS OCCURED IN SHENYANG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 33-43. doi: 10.13205/j.hjgc.202209005
    [4]XIAO Kai, REN Xue-chang, CHEN Ren-hua. ANALYSIS OF TRANSMISSION CHARACTERISTICS AND POTENTIAL SOURCES OF AIR POLLUTANTS IN JIAYUGUAN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 92-101,109. doi: 10.13205/j.hjgc.202109014
    [5]JIN Si-yu, MA Yun-feng, WANG Qi, ZHAO Di, WANG Mai-bo, LIU Qi-yao. ANALYSIS OF A HEAVY AIR POLLUTION PROCESS IN SHENYANG IN 2018[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 120-129. doi: 10.13205/j.hjgc.202103017
    [6]ZHOU Chuan, WU Qi-rong, YU Jiang-tao, QIN Fu-chu. NUMERICAL SIMULATION FOR FGD WASTEWATER EVAPORATION IN THE FLUE DUCT OF A 2×350 MW COAL-FIRED UNIT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 96-101. doi: 10.13205/j.hjgc.202005017
    [7]LIU Chun-yue, WANG Hui, BAI Ming-yue, ZHAO Yue-ming, WU Hao, WANG Xiao-xu, ZHAO Si-cong. RISK ASSESSMENT AND CHARACTERISTICS OF HEAVY METALS IN SURFACE SOIL OF OLD TOWN OF SHENYANG[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 167-171. doi: 10.13205/j.hjgc.202001027
    [8]LUO Qing, GU Lei-yan, SHAN Yue, SUN Li-na. HEALTH RISK ASSESSMENT OF POLYCYCLIC AROMATIC HYDROCARBONS IN URBAN TOP SOIL OF SHENYANG BASED ON MONTE CARLO METHOD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 196-201,222. doi: 10.13205/j.hjgc.202005034
    [12]Wu Huiling, Hu Zhanbo, Xin Liping, Chai Xinsheng, Liang Yicong. PRINCIPAL COMPONENT ANALYSIS FOR OPTIMIZATION OF THE CARBON FIBER LAYING DENSITY IN REMEDIATION OF BLACK-ODOROUS WATER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 39-43. doi: 10.13205/j.hjgc.201506009
  • Cited by

    Periodical cited type(5)

    1. 丁雨薇,王晓辉,彭书传. 滁州市大气环境质量底线及管控分区研究. 合肥工业大学学报(自然科学版). 2024(06): 739-744 .
    2. 蒋硕,董疆南,关乐. 雾霾天气下城市大气PM_(2.5)污染物扩散模拟研究. 环境科学与管理. 2024(12): 60-65 .
    3. 刘恩海,任晓康,张智,李妍,赵娜,张军. 基于交互差分时空LSTM的网格化臭氧浓度预测. 河北工业大学学报. 2023(03): 36-43 .
    4. 文金科,王体健,马根慧,盛湘渝,王玉政,陆晓波,项华均,吴冬玲,李光明. WRF-Chem与ADMS对城区尺度大气污染精细化模拟的比较. 环境科学学报. 2022(04): 276-292 .
    5. 董浩,孙琳,欧阳峰. 基于Informer的PM_(2.5)浓度预测. 环境工程. 2022(06): 48-54+62 . 本站查看

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.0 %FULLTEXT: 16.0 %META: 79.5 %META: 79.5 %PDF: 4.5 %PDF: 4.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.4 %其他: 16.4 %Canton: 0.8 %Canton: 0.8 %China: 0.4 %China: 0.4 %United States: 1.2 %United States: 1.2 %[]: 1.2 %[]: 1.2 %上海: 0.8 %上海: 0.8 %临汾: 0.4 %临汾: 0.4 %乌鲁木齐: 0.4 %乌鲁木齐: 0.4 %仙桃: 0.4 %仙桃: 0.4 %兰州: 0.4 %兰州: 0.4 %加利福尼亚州: 0.4 %加利福尼亚州: 0.4 %北京: 3.3 %北京: 3.3 %南京: 2.5 %南京: 2.5 %南通: 1.2 %南通: 1.2 %台州: 2.5 %台州: 2.5 %天津: 2.0 %天津: 2.0 %太原: 0.8 %太原: 0.8 %定西: 0.4 %定西: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.4 %广州: 0.4 %廊坊: 0.8 %廊坊: 0.8 %开封: 0.4 %开封: 0.4 %张家口: 0.8 %张家口: 0.8 %成都: 1.2 %成都: 1.2 %昆明: 1.6 %昆明: 1.6 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.4 %杭州: 0.4 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %沧州: 0.4 %沧州: 0.4 %济源: 0.8 %济源: 0.8 %温州: 0.8 %温州: 0.8 %湖州: 0.4 %湖州: 0.4 %漯河: 0.8 %漯河: 0.8 %纽约: 0.4 %纽约: 0.4 %芒廷维尤: 30.7 %芒廷维尤: 30.7 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.8 %苏州: 0.8 %衢州: 2.9 %衢州: 2.9 %西宁: 5.7 %西宁: 5.7 %西雅图: 0.4 %西雅图: 0.4 %贵阳: 0.4 %贵阳: 0.4 %迈尔斯堡: 0.4 %迈尔斯堡: 0.4 %运城: 4.1 %运城: 4.1 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.2 %郑州: 1.2 %重庆: 0.4 %重庆: 0.4 %银川: 2.9 %银川: 2.9 %长沙: 0.4 %长沙: 0.4 %长治: 0.4 %长治: 0.4 %鞍山: 0.4 %鞍山: 0.4 %其他CantonChinaUnited States[]上海临汾乌鲁木齐仙桃兰州加利福尼亚州北京南京南通台州天津太原定西常德广州廊坊开封张家口成都昆明晋城朝阳杭州武汉沈阳沧州济源温州湖州漯河纽约芒廷维尤芝加哥苏州衢州西宁西雅图贵阳迈尔斯堡运城遵义邯郸郑州重庆银川长沙长治鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (193) PDF downloads(11) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return