Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHONG Ping, WANG Ang-lu, ZHANG Hui-di, GONG Xiang-yi, ZHANG Jia-quan, ZHANG Xi-hao, HU Hong-yuan, TIAN Qian. CHARACTERISTICS AND SOURCE ANALYSIS OF WATER-SOLUBLE ION POLLUTION IN ATMOSPHERIC DUSTFALL IN WUHAN UNIVERSITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 98-104. doi: 10.13205/j.hjgc.202102015
Citation: ZHONG Ping, WANG Ang-lu, ZHANG Hui-di, GONG Xiang-yi, ZHANG Jia-quan, ZHANG Xi-hao, HU Hong-yuan, TIAN Qian. CHARACTERISTICS AND SOURCE ANALYSIS OF WATER-SOLUBLE ION POLLUTION IN ATMOSPHERIC DUSTFALL IN WUHAN UNIVERSITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 98-104. doi: 10.13205/j.hjgc.202102015

CHARACTERISTICS AND SOURCE ANALYSIS OF WATER-SOLUBLE ION POLLUTION IN ATMOSPHERIC DUSTFALL IN WUHAN UNIVERSITIES

doi: 10.13205/j.hjgc.202102015
  • Received Date: 2020-04-23
    Available Online: 2021-07-19
  • There were 106 dustfall samples collected from Wuhan universities during November 2017. Nine types of water-soluble ions (F-, Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+, Ca2+) were analyzed by ion chromatography. Correlation analysis and ratio analysis were used to analyze the pollution characteristics, and the PCA-MLR model was used to discuss its source and contribution rate. The results showed that the main water-soluble ions in dust reduction in Wuhan universities were Ca2+, SO42- and NO3-, and the average concentration order was Ca2+>SO42->NO3->K+>Na+>Cl->Mg2+>NH4+>F-. There were obvious spatial qualitative differences in the distribution of F-, Cl-, NO3-, SO42-, Na+, K+, Mg2+ and Ca2+. The mass ratio of NO3-/SO42- was 0.28, which was dominated by fixed-source pollution; the dust-reducing samples were generally alkaline. Nine types of soluble ions existed mainly in forms of NaCl, KCl, MgCl2, Mg (NO3)2, MgSO4, Ca(NO3)2, CaSO4, etc., mainly from soil/transport mixed sources, combustion sources, industrial source, and their contribution rates were 8%, 12% and 80%, respectively.
  • [1]
    熊秋林, 赵文吉, 郭逍宇, 等. 北京城区冬季降尘微量元素分布特征及来源分析[J]. 环境科学, 2015,36(8):2735-2742.
    [2]
    TSAI Y I, KUO S C, YOUNG L H, et al. Atmospheric dry plus wet deposition and wet-only deposition of dicarboxylic acids and inorganic compounds in a coastal suburban environment[J]. Atmospheric Environment, 2014,89:696-706.
    [3]
    王玉荧, 张六一, 杨复沫, 等. 三峡库区腹地秋末冬初大气干湿沉降化学组成特征[J]. 环境科学导刊, 2018,37(4):34-39.
    [4]
    PAN Y P, WANG Y S. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China[J]. Atmospheric Chemistry and Physics, 2015,15(2):951-972.
    [5]
    DUAN L, YU Q, ZHANG Q, et al. Acid deposition in Asia:emissions, deposition, and ecosystem effects[J]. Atmospheric Environment, 2016,146:55-69.
    [6]
    刘章现, 王国贞, 郭瑞, 等. 河南省平顶山市大气降尘的化学特征及其来源解析[J]. 环境化学, 2011,30(4):825-831.
    [7]
    XIE Y J, LU H B, YI A J, et al. Characterization and source analysis of water-soluble ions in PM2.5 at a background site in Central China[J]. Atmospheric Research, 2020,239:104881.
    [8]
    WANG S S, YU R L, SHEN H Z, et al. Chemical characteristics, sources, and formation mechanisms of PM2.5 before and during the Spring Festival in a coastal city in Southeast China[J]. Environmental Pollution, 2019,251:442-452.
    [9]
    张家泉, 胡天鹏, 刘浩, 等. 316国道黄石-武汉段大气降尘中水溶性离子污染特征[J]. 中国粉体技术, 2014,20(6):34-39.
    [10]
    TIAN S L, PAN Y P, LIU Z R, et al. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China[J]. Journal of Hazardous Materials, 2014,279:452-460.
    [11]
    XU L L, YU Y K, YU J S, et al. Spatial distribution and sources identification of elements in PM2.5 among the coastal city group in the Western Taiwan Strait region, China[J]. Science of the Total Environment, 2013,442:77-85.
    [12]
    LU Y L, WANG Y, ZUO J, et al. Characteristics of public concern on haze in China and its relationship with air quality in urban areas[J]. Science of the Total Environment, 2018,637/638:1597-1606.
    [13]
    XU D M, ZHANG J Q, YAN B, et al. Contamination characteristics and potential environmental implications of heavy metals in road dusts in typical industrial and agricultural cities, southeastern Hubei Province, Central China[J]. Environmental Science and Pollution Research, 2018,25(36):36223-36238.
    [14]
    张一修, 王济, 张浩. 贵阳市区地表灰尘重金属污染分析与评价[J]. 生态环境学报, 2011,20(1):169-174.
    [15]
    OTHMAN M, LATIF M T, MATSUMI Y. The exposure of children to PM2.5 and dust in indoor and outdoor school classrooms in Kuala Lumpur City Centre[J]. Ecotoxicology and Environmental Safety, 2019,170:739-749.
    [16]
    孙有昌, 姜楠, 王申博, 等. 安阳市大气PM2.5中水溶性离子季节特征及来源解析[J]. 环境科学, 2020,41(1):75-81.
    [17]
    ZHANG Q, SHEN Z X, CAO J J, et al. Chemical profiles of urban fugitive dust over Xi'an in the south margin of the Loess Plateau, China[J]. Atmospheric Pollution Research, 2014,5(3):421-430.
    [18]
    闫广轩, 张靖雯, 雷豪杰, 等. 郑州市大气细颗粒物中水溶性离子季节性变化特征及其源解析[J]. 环境科学, 2019,40(4):1545-1552.
    [19]
    ZHANG X Y, ZHAO X, Ji G X, et al. Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China[J]. Journal of Atmospheric Chemistry, 2019,76(1):73-88.
    [20]
    ZHAO Y, YU R L, HU G R, et al. Chemical characteristics and Pb isotopic compositions of PM2.5 in Nanchang, China[J]. Particuology, 2017,32:95-102.
    [21]
    LIU X H, JIANG N, YU X, et al. Chemical characteristics, sources apportionment, and risk assessment of PM2.5 in different functional areas of an emerging megacity in China[J]. Aerosol and Air Quality Research, 2019,19(10):2222-2238.
    [22]
    张伟, 姬亚芹, 张军, 等. 辽宁典型城市道路扬尘PM2.5中水溶性无机离子组分特征及来源解析[J]. 环境科学, 2017,38(12):4951-4957.
    [23]
    KULSHRESTHA A, BISHT D S, MASIH J, et al. Chemical characterization of water-soluble aerosols in different residential environments of semi aridregion of India[J]. Journal of Atmospheric Chemistry, 2009,62(2):121-138.
    [24]
    程佳惠, 李金娟, 孙广权, 等. 典型酸雨城市降水、降尘中阴阳离子分布特征及其相关性[J]. 环境科学学报, 2015,35(6):1676-1682.
    [25]
    丁海霞, 陶雪梅, 张宁. 兰州市大气降尘和土壤中水溶性离子的研究[J]. 甘肃科技, 2017,33(20):33-36.
    [26]
    郭振东, 朱彬, 王红磊, 等. 长江三角洲霾天气PM2.5中水溶性离子特征及来源解析[J]. 中国环境科学, 2019,39(3):928-938.
    [27]
    WANG H L, ZHU B, SHEN L J, et al. Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China:Size-fractionated, seasonal variations and sources[J]. Atmospheric Environment, 2015,123:370-379.
    [28]
    王剑, 徐美, 叶霞, 等. 沧州市大气降水化学特征分析[J]. 环境科学与技术, 2014,37(4):96-102.
  • Relative Articles

    [1]REN Jiahao, XIAO Bin, CHEN Yizhen, ZHANG Kai, ZHAO Yuxi. ASSESSMENT OF IMPACT OF STACK HEIGHT CHANGES OF COAL-FIRED POWER PLANTS ON AIR QUALITY AND ITS IMPLICATIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 66-73. doi: 10.13205/j.hjgc.202404008
    [2]WANG Tao-ying, XU Jun-feng, HU Yan-yun, SHI Xiao-lei, HENG Shi-quan, YU Kuang. TREATMENT OF HIGH-SALT WASTEWATER FROM COAL-FIRED THERMAL POWER PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 112-116,145. doi: 10.13205/j.hjgc.202001017
    [6]Jin Dinqiang, Shu Xi, Shen Zhiyong, Zhuang Ke, Tang Huijin. APPLICATION OF WET ELECTROSTATIC PRECIPITATOR IN HIGH CAPACITY THERMAL POWER GENERATION UNIT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 65-68. doi: 10.13205/j.hjgc.201503013
    [7]Hui Runtang Miao Yongqi Zhu Liping Yu Li, . STUDY ON REFORMATION STRATEGY OF BOILER INDUCED DRAFT FAN IN THERMAL POWER PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 85-89. doi: 10.13205/j.hjgc.201505018
  • Cited by

    Periodical cited type(9)

    1. 胡纯国,徐力. 大型封闭储煤场自动消防炮设计的避遮挡研究. 消防科学与技术. 2023(10): 1423-1427 .
    2. 杨统一,李静,马刘畅,唐玉斌. 镇江市谏壁发电厂周边土壤重金属污染特征及风险评价. 江苏科技大学学报(自然科学版). 2022(04): 91-99 .
    3. 王晶. 燃煤电厂煤场区域及运煤道路环境综合治理技术. 能源技术与管理. 2021(03): 191-192 .
    4. 史培宁,周成龙,张德林. 锦界电厂煤场改造的可行性分析. 选煤技术. 2021(03): 69-71 .
    5. 张川,陈星明,周家家,周亭,许向彬. 露天煤场环保型抑尘剂的制备及性能测试. 矿业安全与环保. 2021(05): 50-53+58 .
    6. 赵爱宏,秦玲玲. 煤场封闭改造和应用. 电工技术. 2020(10): 107-108+111 .
    7. 宋晓程. 煤场厂房通风和污染扩散的CFD研究. 大连大学学报. 2020(03): 45-48 .
    8. 周彦军,李元昊,司小飞,王世稳. 气膜式封闭煤场在某火电厂的应用及投资分析. 山东工业技术. 2019(15): 206-207+221 .
    9. 温珺琪. 我国火电厂大气污染防治现状研究. 中国新技术新产品. 2019(24): 110-111 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.8 %FULLTEXT: 22.8 %META: 77.2 %META: 77.2 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.5 %其他: 12.5 %其他: 0.4 %其他: 0.4 %北京: 1.8 %北京: 1.8 %十堰: 0.4 %十堰: 0.4 %台州: 1.3 %台州: 1.3 %太原: 0.4 %太原: 0.4 %张家口: 1.3 %张家口: 1.3 %扬州: 0.9 %扬州: 0.9 %杭州: 0.4 %杭州: 0.4 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %温州: 0.4 %温州: 0.4 %湖州: 0.4 %湖州: 0.4 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.4 %石家庄: 0.4 %芒廷维尤: 71.9 %芒廷维尤: 71.9 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.4 %苏州: 0.4 %蚌埠: 0.4 %蚌埠: 0.4 %衢州: 1.3 %衢州: 1.3 %西宁: 0.9 %西宁: 0.9 %重庆: 0.4 %重庆: 0.4 %长沙: 0.4 %长沙: 0.4 %青岛: 0.9 %青岛: 0.9 %其他其他北京十堰台州太原张家口扬州杭州武汉沈阳温州湖州漯河石家庄芒廷维尤芝加哥苏州蚌埠衢州西宁重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (173) PDF downloads(8) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return