Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YUAN Jian-ye, NAN Xin-yuan, CAI Xin, LI Cheng-rong. GARBAGE IMAGE CLASSIFICATION BY LIGHTWEIGHT RESIDUAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 110-115. doi: 10.13205/j.hjgc.202102017
Citation: YUAN Jian-ye, NAN Xin-yuan, CAI Xin, LI Cheng-rong. GARBAGE IMAGE CLASSIFICATION BY LIGHTWEIGHT RESIDUAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 110-115. doi: 10.13205/j.hjgc.202102017

GARBAGE IMAGE CLASSIFICATION BY LIGHTWEIGHT RESIDUAL NETWORK

doi: 10.13205/j.hjgc.202102017
  • Received Date: 2020-04-06
    Available Online: 2021-07-19
  • In recent years, the total domestic garbage in China has been increasing at a rate of 10% per year. However, the technology for the classification and treatment of domestic garbage is relatively limited and backward. The classification method based on machine vision has been widely used. Traditional visual classification net currently faces the problems of sophisticated parameters, large amount of calculation, low classification accuracy, and long classification time. Therefore, this paper proposed to use Max-AVE Pooling instead of Max Pooling or AVE Pooling in ResNet-50Bottleneck, and use the depth separable convolution instead of the standard convolution method in ResNet-50Bottleneck to classify junk images. The experimental results showed that the lightweight residual network (MaxAVE-Pooling-MobileNet-18, MAPMobileNet-18) proposed in this paper could significantly reduce the parameter amount by 10 times and the calculation amount by 14 times, and slightly improve the accuracy compared with the classical classification network. It is very suitable for the implementation and application of mobile phones and embedded devices.
  • [1]
    张英民,尚晓博,李开明,等.城市生活垃圾处理技术现状与管理对策[J].生态环境学报,2011,20(2):389-396.
    [2]
    孟菁华,刘辉,史学峰,等.垃圾焚烧设施居民暴露吸入性健康风险评价研究[J].环境工程,2018,36(1):128-133.
    [3]
    孙思明.上海市垃圾分类政策执行过程研究[J].现代经济信息,2019(34):496.
    [4]
    "全国垃圾分类"小程序正式上线[J].城乡建设,2019(24):5.
    [5]
    吴健,陈豪,方武.基于计算机视觉的废物垃圾分析与识别研究[J].信息技术与信息化,2016(10):81-83.
    [6]
    黄惠玲,韩军,吴飞斌,等.建筑垃圾的颜色特征提取与分类研究[J].光学与光电技术,2018,16(1):53-57.
    [7]
    吴碧程,邓祥恩,张子憧,等.基于卷积神经网络的智能垃圾分类系统[J].物理实验,2019,39(11):44-49.
    [8]
    金宜英,邴君妍,罗恩华,等.基于分类趋势下的我国生活垃圾处理技术展望[J].环境工程,2019,37(9):149-153

    ,130.
    [9]
    LECUN Y,BOSER B,DENKER J, et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551.
    [10]
    KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNet Classification with Deep Convolutional Neural Networks[C]//NIPS,Curran Associates Inc,2012.
    [11]
    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv,2014, 1409.1556.
    [12]
    SZEGEDY, C, LIU W, JIA Y Q, et al. Going deeper with convolutions[J]. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1-9. DOI: 10.1109/CVPR.2015.7298594.
    [13]
    HE K M, ZHANG X Y, REN S Q, et al.(2016). Deep Residual Learning for Image Recognition[J]. 770-778. DOI: 10.1109/CVPR.2016.90.
    [14]
    IANDOLA, F N, HAN S MOSKEWIQ M W, et al. SqueezeNet:alexNet-level accuracy with 50x fewer parameters and<0.5MB model size[J].
    [15]
    CHOLLET F. Xception:deep learning with depthwise separable convolutions[J]. 1800-1807. DOI: 10.1109/CVPR.2017.195.
    [16]
    ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[J]. 6848-6856. DOI: 10.1109/CVPR.2018.00716.
    [17]
    YU D J, WANG H L, CHEN P Q, et al. Mixed pooling for convolutional neural networks[J]. 364-375. DOI: 10.1007/978-3-319-11740-9_34.
    [18]
    HOWARD A G, ZHU M L, CHEN B, et al. MobileNets:efficient convolutional neural networks for mobile vision applications[C].2017.
    [19]
    HUA, B S,TRAN M K, YEUNG S K. Pointwise convolutional neural networks[J].984-993. DOI: 10.1109/CVPR.2018.00109.
    [20]
    HOWARD, ANDREW, PANG, et al. Searching for MobileNetV3[J]. 1314-1324. DOI: 10.1109/ICCV.2019.00140.
    [21]
    HUANG G, LIU Z, PLEISSG, et al. Convolutional Networks with Dense Connectivity[J].Research Gate, 2020.
  • Relative Articles

    [1]XU Li, ZHOU Lawu, LI Gaojia. A RECYCLABLE WASTE SORTING SYSTEM BASED ON AN IMPROVED INCEPTION RESNET V2 NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 233-241. doi: 10.13205/j.hjgc.202404027
    [2]GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
    [3]QIAN Xu, CHEN Pengpeng, XIE Pengcheng, GE Chunling, LUO Wei. AN INTELLIGENT CLASSIFICATION INFRASTRUCTURE SYSTEM FOR COMMUNITY SOLID WASTE: DESIGN AND IMPLEMENTING SCHEME[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 239-246. doi: 10.13205/j.hjgc.202402028
    [4]XIAO Lizhong, HU Fan. GARBAGE DETECTION BASED ON LGD-YOLO HIGH PRECISION LIGHTWEIGHT OBJECT DETECTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 169-177. doi: 10.13205/j.hjgc.202406020
    [5]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [6]XIA Jingming, XU Zifeng, TAN Lin. APPLICATION RESEARCH OF LIGHTWEIGHT NETWORK LW-GCNet IN GARBAGE CLASSIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 173-180. doi: 10.13205/j.hjgc.202302023
    [7]GUO Zirui, CHEN Zhiqiang, CHI Riguang, SHEN Aihua. PREDICTION OF POLYHYDROXYALKANOATE (PHA) PRODUCTION UTILIZING FOOD WASTE BASED ON GA-BP NEURAL NETWORK METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 166-173. doi: 10.13205/j.hjgc.202204024
    [8]WANG Wensheng, NIAN Chengxu, ZHANG Chao, YAN Rupeng, WU Xinquan, ZHANG Xinbo. DESIGN OF AUTOMATIC GARBAGE SORTING BIN FOR NON-RESIDENTIAL AREA BASED ON YOLO v5[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 159-165. doi: 10.13205/j.hjgc.202203024
    [9]WANG Jie, GU Weihua, CHEN Zehui, SONG Erxi, SHENG Nan, YAO Wei, WANG Jingwei, QIAN Yichao. ANALYSIS OF PRACTICAL EFFECTS, PROBLEMS AND COUNTERMEASURES OF DOMESTIC WASTE CLASSIFICATION:A CASE STUDY IN ZHILI TOWN, HUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 188-193. doi: 10.13205/j.hjgc.202203028
    [10]ZHANG Tong, ZHANG Liqiu, FENG Li, LIU Yongze, DU Ziwen. ANALYSIS OF CHANGES IN CHARACTERISTICS OF KITCHEN WASTE AFTER SORTING AND DOMESTIC WASTE BEFORE SORTING IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 22-28. doi: 10.13205/j.hjgc.202212004
    [11]HE Jia-ni, LIU Yi-li, LI Zhu-lin, QIU Zhao-wen. ENERGY CONSUMPTION ANALYSIS OF MUNICIPAL SOLID WASTE CLASSIFIED TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 136-142. doi: 10.13205/j.hjgc.202110019
    [12]YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016
    [13]REN Zhong-shan, CHEN Ying, WANG Yong-ming, TENG Jing-jie, QIAO Peng. ANALYSIS OF INFLUENCE OF DOMESTIC WASTE CLASSIFICATION ON DEVELOPMENT OF WASTE INCINERATION POWER GENERATION INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 150-153,206. doi: 10.13205/j.hjgc.202106022
    [14]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
    [15]LI Qiang, LIU Yang, SHEN Ling. NETWORK LAYOUT OF DYNAMIC CONSTRUCTION WASTE DISPOSAL FACILITIES BASED ON COMPLEX NETWORK THEORY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 130-137. doi: 10.13205/j.hjgc.202012022
    [16]SUN Xiao-jie, WANG Chun-lian, LI Qian, ZHANG Hong-xia, YE Yu-hang. DEVELOPMENT AND EVOLUTION OF CHINA’S DOMESTIC WASTE CLASSIFICATION POLICY SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 65-70. doi: 10.13205/j.hjgc.202008011
  • Cited by

    Periodical cited type(18)

    1. 张彦博,郭小燕,黄海钤,于帅卿. 一种基于VovNet的轻量级农作物虫害分类模型. 热带农业工程. 2024(01): 18-24 .
    2. 黄乐程. 基于深度学习的生活垃圾分类方法现状与展望. 信息技术与信息化. 2024(03): 115-119 .
    3. 田建杰,尚玉龙. 基于YOLOv5图像识别的垃圾自动分类系统的设计. 电脑知识与技术. 2024(08): 5-7 .
    4. 徐丽,周腊吾,李高嘉. 基于改进Inception ResNet V2网络的可回收垃圾分拣系统. 环境工程. 2024(04): 233-241 . 本站查看
    5. 施玉娟. 融合卷积注意力与Transformer的垃圾图像检测. 九江学院学报(自然科学版). 2023(01): 81-88 .
    6. 李洋,苟刚. 基于改进YOLOX的轻量型垃圾分类检测方法. 广西师范大学学报(自然科学版). 2023(03): 80-90 .
    7. 黄日辰,陈晓龙. 基于高效的动态网络垃圾图像分类模型研究. 金华职业技术学院学报. 2023(03): 60-67 .
    8. 马旭,杨立东,郭勇,赵艳锋. 改进DeepLabV3+网络的露天矿挡墙分割方法. 电子测量技术. 2023(10): 92-97 .
    9. 袁斌,张超军,李晨. 基于MobileViT轻量级视觉模型的垃圾自动分类系统设计. 包装工程. 2023(23): 208-215 .
    10. 董红召,方浩杰,张楠. 旋转框定位的多尺度再生物品目标检测算法. 浙江大学学报(工学版). 2022(01): 16-25 .
    11. 李金玉,陈晓雷,张爱华,李策,林冬梅. 基于深度学习的垃圾分类方法综述. 计算机工程. 2022(02): 1-9 .
    12. 王文胜,年诚旭,张超,阎如鹏,吴鑫全,张歆博. 基于YOLO v5模型的非住宅区自动垃圾分类箱设计. 环境工程. 2022(03): 159-165 . 本站查看
    13. 桑一梅,陆萍. 基于深度卷积神经网络的自动垃圾分类. 甘肃科技纵横. 2022(03): 1-3+34 .
    14. 刘后胜,张洋,陶健林. 基于优化改进的Xception模型的垃圾图片分类. 黄山学院学报. 2022(03): 30-32 .
    15. 徐明明,高丙朋,黄家興. 改进残差网络的轻量级塑料垃圾分类研究. 现代电子技术. 2022(17): 95-99 .
    16. 孟德尧,吴荣海,杨邓奇. 基于集成学习的有害垃圾自动识别方法研究. 现代计算机. 2022(16): 38-42 .
    17. 于帅卿,郭小燕. 一种轻量级苜蓿虫害分类模型. 软件导刊. 2022(11): 144-151 .
    18. 陈智超,焦海宁,杨杰,曾华福. 基于改进MobileNet v2的垃圾图像分类算法. 浙江大学学报(工学版). 2021(08): 1490-1499 .

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.8 %FULLTEXT: 20.8 %META: 76.6 %META: 76.6 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.8 %其他: 15.8 %其他: 0.2 %其他: 0.2 %Australia: 0.3 %Australia: 0.3 %China: 0.5 %China: 0.5 %Matawan: 1.0 %Matawan: 1.0 %[]: 1.4 %[]: 1.4 %东莞: 0.3 %东莞: 0.3 %临汾: 0.2 %临汾: 0.2 %丽水: 0.2 %丽水: 0.2 %北京: 0.7 %北京: 0.7 %十堰: 0.2 %十堰: 0.2 %南京: 0.5 %南京: 0.5 %南昌: 0.2 %南昌: 0.2 %南通: 0.7 %南通: 0.7 %台州: 0.2 %台州: 0.2 %合肥: 0.7 %合肥: 0.7 %周口: 0.2 %周口: 0.2 %唐山: 0.3 %唐山: 0.3 %喀什: 0.2 %喀什: 0.2 %多哈: 0.5 %多哈: 0.5 %大理白族自治州: 0.3 %大理白族自治州: 0.3 %大连: 0.2 %大连: 0.2 %大阪: 0.2 %大阪: 0.2 %天津: 0.5 %天津: 0.5 %太原: 0.3 %太原: 0.3 %安康: 0.2 %安康: 0.2 %宜春: 0.3 %宜春: 0.3 %宣城: 0.3 %宣城: 0.3 %常德: 0.2 %常德: 0.2 %广州: 0.5 %广州: 0.5 %廊坊: 0.2 %廊坊: 0.2 %张家口: 0.3 %张家口: 0.3 %德州: 0.2 %德州: 0.2 %成都: 0.5 %成都: 0.5 %扬州: 0.7 %扬州: 0.7 %新北: 0.2 %新北: 0.2 %昆明: 0.5 %昆明: 0.5 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.2 %朝阳: 0.2 %杭州: 2.9 %杭州: 2.9 %武汉: 1.9 %武汉: 1.9 %沧州: 0.5 %沧州: 0.5 %法尔肯施泰因: 1.0 %法尔肯施泰因: 1.0 %泗水: 0.5 %泗水: 0.5 %济南: 0.9 %济南: 0.9 %济源: 0.3 %济源: 0.3 %淮南: 0.2 %淮南: 0.2 %深圳: 0.5 %深圳: 0.5 %湖州: 0.2 %湖州: 0.2 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 44.4 %芒廷维尤: 44.4 %芝加哥: 3.6 %芝加哥: 3.6 %苏州: 0.2 %苏州: 0.2 %衢州: 0.7 %衢州: 0.7 %西宁: 4.9 %西宁: 4.9 %西安: 0.3 %西安: 0.3 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.7 %运城: 1.7 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.5 %郑州: 0.5 %重庆: 0.2 %重庆: 0.2 %金华: 0.7 %金华: 0.7 %长治: 0.2 %长治: 0.2 %雅安: 0.2 %雅安: 0.2 %青岛: 1.2 %青岛: 1.2 %其他其他AustraliaChinaMatawan[]东莞临汾丽水北京十堰南京南昌南通台州合肥周口唐山喀什多哈大理白族自治州大连大阪天津太原安康宜春宣城常德广州廊坊张家口德州成都扬州新北昆明晋城朝阳杭州武汉沧州法尔肯施泰因泗水济南济源淮南深圳湖州漯河石家庄秦皇岛芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州重庆金华长治雅安青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (440) PDF downloads(16) Cited by(31)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return