Citation: | ZHOU Jun, LI Yan, GUAN Yi-dong, HUANG Li-dong, JIN Hong-mei, XIAO Qiong, SONG Jiang-sheng. MIXED SORPTION OF THREE AQUEOUS SULFONAMIDES ONTO THE BIOCHAR DERIVED FROM POPLAR WOOD CHIPS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 1-6,13. doi: 10.13205/j.hjgc.202103001 |
[1] |
CHOI K J, KIM S G, KIM C W, et al. Determination of antibiotic compounds in water by on-line SPE-LC/MSD[J]. Chemosphere, 2007, 66(6):977-984.
|
[2] |
LIN A Y, TSAI Y T. Occurrence of pharmaceuticals in Taiwan's surface waters:impact of waste streams from hospitals and pharmaceutical production facilities[J]. Science of the Total Environment, 2009, 407(12):3793-3802.
|
[3] |
LIAO J Q, CHEN Y G. Removal of intl1 and associated antibiotics resistant genes in water, sewage sludge and livestock manure treatments[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(3):471-500.
|
[4] |
GUAN Y D, WANG B, GAO Y X, et al. Occurrence and fate of antibiotics in the aqueous environment and their removal by constructed wetlands in China:a review[J]. Pedosphere, 2017, 27(1):42-51.
|
[5] |
HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices:a review[J]. J Environ Manage, 2011, 92(10):2304-2347.
|
[6] |
赵涛. 不同生物炭对水中磺胺类抗生素的吸附及机理研究[D]. 广州:华南农业大学, 2016.
|
[7] |
SNYDER S A, ADHAM S, REDDING A M, et al. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals[J]. Desalination, 2007, 202(1/2/3):156-181.
|
[8] |
WU Y, WILLIAMS M, SMITH L, et al. Dissipation of sulfamethoxazole and trimethoprim antibiotics from manure-amended soils[J]. Journal of Environmental Science and Health, Part B, 2012, 47(4):240-249.
|
[9] |
CHEN Z M, XIAO X, XING B S, et al. pH-dependent sorption of sulfonamide antibiotics onto biochars:Sorption mechanisms and modeling[J]. Environmental Pollution, 2019, 248:48-56.
|
[10] |
LI X G, FENG H, HUANG M R. Strong adsorbability of mercury ions on aniline/sulfoanisidine copolymer nanosorbents[J]. Chemistry-A European Journal, 2009, 15(18):4573-4581.
|
[11] |
LI X G, MA X L, SUN J, et al. Powerful reactive sorption of silver (Ⅰ) and mercury (Ⅱ) onto poly (o-phenylenediamine) microparticles[J]. Langmuir, 2009, 25(3):1675-1684.
|
[12] |
靳红梅, 许彩云, 黄红英, 等. 猪粪中温厌氧消化中磺胺类抗生素的降解和吸附特征[J]. 农业环境科学学报, 2017, 36(9):1884-1892.
|
[13] |
HUANG M R, PENG Q Y, LI X G. Rapid and effective adsorption of lead ions on fine poly (phenylenediamine) microparticles[J]. Chemistry-A European Journal, 2006, 12(16):4341-4350.
|
[14] |
黄美荣, 李新贵, 郭世坚. 含多官能团的全芳香酚胺共聚物及其制备方法与应用:CN105312033B[P]. 2017-12-05.
|
[15] |
董浩亮. 木质纤维生物质化学预处理后的微结构与热化学研究[D]. 西安:陕西科技大学, 2015.
|
[16] |
王丽丽, 曹振, 刘卓, 等. 杨木炭对东北黑土吸附猪粪沼液氮素特性的影响[J]. 农业机械学报, 2020, 51(3):295-305.
|
[17] |
INYANG M, GAO B, ZIMMERMAN A, et al. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars[J]. Environ Sci Pollut Res Int, 2015, 22(3):1868-1876.
|
[18] |
AHMED M B, ZHOU J L, NGO H H, et al. Insight into biochar properties and its cost analysis[J]. Biomass and Bioenergy, 2016, 84:76-86.
|
[19] |
AHMED M B, ZHOU J L, NGO H H, et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater:a critical review[J]. Journal of Hazardous Materials, 2017, 323(Ptar A):274-298.
|
[20] |
LEKAGUL A, TANGCHAROENSATHIEN V, YEUNG S. Patterns of antibiotic use in global pig production:a systematic review[J]. Veterinary and Animal Science, 2019, 7:100058.
|
[21] |
何文泽, 何乐林, 李文红, 等. 中药渣生物炭对磺胺甲基嘧啶的吸附及机理研究[J]. 中国环境科学, 2016, 36(11):3376-3382.
|
[22] |
PEIRIS C, GUNATILAKE S R, MLSNA T E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments:a critical review[J]. Bioresource Technology, 2017, 246:150-159.
|
[23] |
LIU Y, SHEN L. From Langmuir kinetics to first-and second-order rate equations for adsorption[J]. Langmuir, 2008, 24(20):11625-11630.
|
[24] |
李靖. 不同源生物炭的理化性质及其对双酚A和磺胺甲噁唑的吸附[D]. 昆明:昆明理工大学, 2013.
|
[25] |
PREMARATHNA K, RAJAPAKSHA A U, SARKAR B, et al. Biochar-based engineered composites for sorptive decontamination of water:a review[J]. Chemical Engineering Journal, 2019, 372:536-550.
|
[26] |
LUO J W, LI X, GE C J, et al. Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems[J]. Bioresource Technology, 2018, 263:385-392.
|
[27] |
LIAN F, SUN B B, SONG Z G, et al. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole[J]. Chemical Engineering Journal, 2014, 248:128-134.
|
[28] |
TRAN H N, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions:a critical review[J]. Water Research, 2017, 120:88-116.
|
[29] |
KOMKIENE J, BALTRENAITE E. Biochar as adsorbent for removal of heavy metal ions[Cadmium (Ⅱ), Copper (Ⅱ), Lead (Ⅱ), Zinc (Ⅱ)] from aqueous phase[J]. International Journal of Environmental Science and Technology, 2016, 13(2):471-482.
|
[30] |
ZHENG H, WANG Z Y, ZHAO J, et al. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures[J]. Environmental Pollution, 2013, 181:60-67.
|
[31] |
AHMED M B, ZHOU J L, NGO H H, et al. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment[J]. Bioresource Technology, 2017, 238:306-312.
|