Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 39 Issue 3
Jul.  2021
Turn off MathJax
Article Contents
ZHOU Jun, LI Yan, GUAN Yi-dong, HUANG Li-dong, JIN Hong-mei, XIAO Qiong, SONG Jiang-sheng. MIXED SORPTION OF THREE AQUEOUS SULFONAMIDES ONTO THE BIOCHAR DERIVED FROM POPLAR WOOD CHIPS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 1-6,13. doi: 10.13205/j.hjgc.202103001
Citation: ZHOU Jun, LI Yan, GUAN Yi-dong, HUANG Li-dong, JIN Hong-mei, XIAO Qiong, SONG Jiang-sheng. MIXED SORPTION OF THREE AQUEOUS SULFONAMIDES ONTO THE BIOCHAR DERIVED FROM POPLAR WOOD CHIPS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 1-6,13. doi: 10.13205/j.hjgc.202103001

MIXED SORPTION OF THREE AQUEOUS SULFONAMIDES ONTO THE BIOCHAR DERIVED FROM POPLAR WOOD CHIPS

doi: 10.13205/j.hjgc.202103001
  • Received Date: 2020-04-20
    Available Online: 2021-07-19
  • Discharge of sulfonamides (SAs) poses seriously potential ecological risk on the aquatic environment. In this paper, the biochar derived from poplar wood chips (PWCs) was produced under three pyrolysis temperatures to investigate the sorption mechanism of SAs in the aqueous solution. The experiment result showed that the pore channel of BC350 and BC500-BC650 was dominated by the macropores and mesopores, respectively. The increase of pyrolysis temperature enhanced the polycyclic aromatic surface of the biochars. The pseudo-secondary-order kinetic model and the Freundlich model could be applied to describe the kinetics and isothermal process of biochar sorption, respectively. The maximum sorption capacity of SAs of BC650 was about 2.6 to 104 times on herb-residue biochars. Based on the calculation of thermodynamics, the sorption of PWC involved the physical and chemical sorption simultaneously, but dominated by chemical sorption. The sorption affinity of three SAs was in the descending order of SPD>SMZ>SDZ, thanked to the support from their molecular morphology analysis.
  • loading
  • [1]
    CHOI K J, KIM S G, KIM C W, et al. Determination of antibiotic compounds in water by on-line SPE-LC/MSD[J]. Chemosphere, 2007, 66(6):977-984.
    [2]
    LIN A Y, TSAI Y T. Occurrence of pharmaceuticals in Taiwan's surface waters:impact of waste streams from hospitals and pharmaceutical production facilities[J]. Science of the Total Environment, 2009, 407(12):3793-3802.
    [3]
    LIAO J Q, CHEN Y G. Removal of intl1 and associated antibiotics resistant genes in water, sewage sludge and livestock manure treatments[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(3):471-500.
    [4]
    GUAN Y D, WANG B, GAO Y X, et al. Occurrence and fate of antibiotics in the aqueous environment and their removal by constructed wetlands in China:a review[J]. Pedosphere, 2017, 27(1):42-51.
    [5]
    HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices:a review[J]. J Environ Manage, 2011, 92(10):2304-2347.
    [6]
    赵涛. 不同生物炭对水中磺胺类抗生素的吸附及机理研究[D]. 广州:华南农业大学, 2016.
    [7]
    SNYDER S A, ADHAM S, REDDING A M, et al. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals[J]. Desalination, 2007, 202(1/2/3):156-181.
    [8]
    WU Y, WILLIAMS M, SMITH L, et al. Dissipation of sulfamethoxazole and trimethoprim antibiotics from manure-amended soils[J]. Journal of Environmental Science and Health, Part B, 2012, 47(4):240-249.
    [9]
    CHEN Z M, XIAO X, XING B S, et al. pH-dependent sorption of sulfonamide antibiotics onto biochars:Sorption mechanisms and modeling[J]. Environmental Pollution, 2019, 248:48-56.
    [10]
    LI X G, FENG H, HUANG M R. Strong adsorbability of mercury ions on aniline/sulfoanisidine copolymer nanosorbents[J]. Chemistry-A European Journal, 2009, 15(18):4573-4581.
    [11]
    LI X G, MA X L, SUN J, et al. Powerful reactive sorption of silver (Ⅰ) and mercury (Ⅱ) onto poly (o-phenylenediamine) microparticles[J]. Langmuir, 2009, 25(3):1675-1684.
    [12]
    靳红梅, 许彩云, 黄红英, 等. 猪粪中温厌氧消化中磺胺类抗生素的降解和吸附特征[J]. 农业环境科学学报, 2017, 36(9):1884-1892.
    [13]
    HUANG M R, PENG Q Y, LI X G. Rapid and effective adsorption of lead ions on fine poly (phenylenediamine) microparticles[J]. Chemistry-A European Journal, 2006, 12(16):4341-4350.
    [14]
    黄美荣, 李新贵, 郭世坚. 含多官能团的全芳香酚胺共聚物及其制备方法与应用:CN105312033B[P]. 2017-12-05.
    [15]
    董浩亮. 木质纤维生物质化学预处理后的微结构与热化学研究[D]. 西安:陕西科技大学, 2015.
    [16]
    王丽丽, 曹振, 刘卓, 等. 杨木炭对东北黑土吸附猪粪沼液氮素特性的影响[J]. 农业机械学报, 2020, 51(3):295-305.
    [17]
    INYANG M, GAO B, ZIMMERMAN A, et al. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars[J]. Environ Sci Pollut Res Int, 2015, 22(3):1868-1876.
    [18]
    AHMED M B, ZHOU J L, NGO H H, et al. Insight into biochar properties and its cost analysis[J]. Biomass and Bioenergy, 2016, 84:76-86.
    [19]
    AHMED M B, ZHOU J L, NGO H H, et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater:a critical review[J]. Journal of Hazardous Materials, 2017, 323(Ptar A):274-298.
    [20]
    LEKAGUL A, TANGCHAROENSATHIEN V, YEUNG S. Patterns of antibiotic use in global pig production:a systematic review[J]. Veterinary and Animal Science, 2019, 7:100058.
    [21]
    何文泽, 何乐林, 李文红, 等. 中药渣生物炭对磺胺甲基嘧啶的吸附及机理研究[J]. 中国环境科学, 2016, 36(11):3376-3382.
    [22]
    PEIRIS C, GUNATILAKE S R, MLSNA T E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments:a critical review[J]. Bioresource Technology, 2017, 246:150-159.
    [23]
    LIU Y, SHEN L. From Langmuir kinetics to first-and second-order rate equations for adsorption[J]. Langmuir, 2008, 24(20):11625-11630.
    [24]
    李靖. 不同源生物炭的理化性质及其对双酚A和磺胺甲噁唑的吸附[D]. 昆明:昆明理工大学, 2013.
    [25]
    PREMARATHNA K, RAJAPAKSHA A U, SARKAR B, et al. Biochar-based engineered composites for sorptive decontamination of water:a review[J]. Chemical Engineering Journal, 2019, 372:536-550.
    [26]
    LUO J W, LI X, GE C J, et al. Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems[J]. Bioresource Technology, 2018, 263:385-392.
    [27]
    LIAN F, SUN B B, SONG Z G, et al. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole[J]. Chemical Engineering Journal, 2014, 248:128-134.
    [28]
    TRAN H N, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions:a critical review[J]. Water Research, 2017, 120:88-116.
    [29]
    KOMKIENE J, BALTRENAITE E. Biochar as adsorbent for removal of heavy metal ions[Cadmium (Ⅱ), Copper (Ⅱ), Lead (Ⅱ), Zinc (Ⅱ)] from aqueous phase[J]. International Journal of Environmental Science and Technology, 2016, 13(2):471-482.
    [30]
    ZHENG H, WANG Z Y, ZHAO J, et al. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures[J]. Environmental Pollution, 2013, 181:60-67.
    [31]
    AHMED M B, ZHOU J L, NGO H H, et al. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment[J]. Bioresource Technology, 2017, 238:306-312.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (299) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return