Citation: | ZHANG Tian, JIANG Bo, XING Yi, YA Hao-bo. REVIEW ON DEVELOPMENT OF ADSORPTION METHODS TO REMOVE ANTIBIOTICS FORM WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 29-39. doi: 10.13205/j.hjgc.202103005 |
[1] |
BILAL M, MEHMOOD S, RASHEED T, et al. Antibiotics traces in the aquatic environment:persistence and adverse environmental impact[J]. Current Opinion in Environmental Science & Health, 2020,13:68-74.
|
[2] |
CARVALHO I T, SANTOS L. Antibiotics in the aquatic environments:a review of the European scenario[J]. Environment International, 2016,94:736-757.
|
[3] |
KOVALAKOVA P, CIZMAS L, MCDONALD T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment:a review[J]. Chemosphere, 2020,251:126351.
|
[4] |
HILLER C X, HVBNER U, FAJNOROVA S, et al. Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes:a review[J]. Science of the Total Environment, 2019,685:596-608.
|
[5] |
LIU X H, GUO X C, LIU Y, et al. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands:performance and microbial response[J]. Environmental Pollution, 2019,254:112996.
|
[6] |
于剑. 浅谈滥用抗生素的危害及应对措施[J]. 现代畜牧科技, 2016(4):171.
|
[7] |
李红燕, 陈兴汉. 环境中抗生素的污染现状及危害[J]. 中国资源综合利用, 2018,36(5):82-84.
|
[8] |
吕晗姣. 强化光化学氧化高效去除水中抗生素恩诺沙星机理研究[D]. 北京:北京交通大学, 2019.
|
[9] |
GHOSH R, HAREENDRAN H, SUBRAMANIAM P. Adsorption of fluoroquinolone antibiotics at the gas-liquid interface using ionic surfactants[J]. Langmuir, 2019,35(39):12839-12850.
|
[10] |
YOOSEFIAN M, AHMADZADEH S, AGHASI M, et al. Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption[J]. Journal of Molecular Liquids, 2017,225:544-553.
|
[11] |
张力媛. 喹诺酮类抗生素检测方法的优化及其在水中光解、水解特性研究[D]. 长春:吉林农业大学, 2016.
|
[12] |
吴爽爽, 解诗雨, 李佳佳, 等. 畜禽粪便中常见抗生素去除的研究进展[J]. 天津农学院学报, 2019,26(2):89-92.
|
[13] |
张佳桐. 超声强化零价铁-催化过硫酸钾降解磺胺嘧啶[D]. 西安:西安理工大学, 2019.
|
[14] |
吴鹏. 动物性食品中磺胺残留的分析技术[D]. 哈尔滨:东北农业大学, 2007.
|
[15] |
WANG Y, GONG S, LI Y, et al. Adsorptive removal of tetracycline by sustainable ceramsite substrate from bentonite/red mud/pine sawdust[J]. Scientific Reports, 2020,10(1):2960.
|
[16] |
李士俊, 谢文明. 污水处理厂中抗生素去除规律研究进展[J]. 环境科学与技术, 2019,42(3):17-29.
|
[17] |
曹金博, 王耀, 胡骁飞, 等. 免疫分析技术在四环素类抗生素残留检测中的应用[J]. 饲料工业, 2019,40(12):53-59.
|
[18] |
朱彦卓. 基于环境中大环内酯类抗生素残留选择性分离的生物材料印迹吸附剂制备及吸附行为和机理研究[D]. 南京:江苏大学, 2016.
|
[19] |
郭强, 马淑涛. 大环内酯类抗生素糖基的结构修饰[J]. 中国抗生素杂志, 2013,38(1):12-21
, 58.
|
[20] |
孙王茹. 臭氧-活性炭组合工艺对污水处理厂二级出水中β-内酰胺类抗生素的去除[J]. 云南化工, 2019,46(4):68-70.
|
[21] |
ZHANG Z, CAO X L, ZHANG Z P, et al. Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid phase extraction of aminoglycosides antibiotics from environmental water samples[J]. Talanta, 2020,208:120385.
|
[22] |
袁耀佐, 张玫, 金少鸿. 氨基糖苷类抗生素质量控制进展[J]. 中国抗生素杂志, 2019,44(11):1244-1255.
|
[23] |
GOMES M P, ROCHA D C, MOREIRA DE BRITO J C, et al. Emerging contaminants in water used for maize irrigation:Economic and food safety losses associated with ciprofloxacin and glyphosate[J]. Ecotoxicology and Environmental Safety, 2020,196:110549.
|
[24] |
杨钊, 李江, 向福亮, 等. 贵州某规模化养猪场废水中抗生素的污染特征及去除效果[J]. 环境科学, 2020(5):1-12.
|
[25] |
GONZÁLEZ-PLEITER M, GONZALO S, RODEA-PALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms:implications for environmental risk assessment[J]. Water Research, 2013,47(6):2050-2064.
|
[26] |
BERGERON S, RAJ B, NATHANIEL R, et al. Presence of antibiotic resistance genes in raw source water of a drinking water treatment plant in a rural community of USA[J]. International Biodeterioration & Biodegradation, 2017,124:3-9.
|
[27] |
DU J, ZHAO H X, WANG Y, et al. Presence and environmental risk assessment of selected antibiotics in coastal water adjacent to mariculture areas in the Bohai Sea[J]. Ecotoxicology and Environmental Safety, 2019,177:117-123.
|
[28] |
QIU W H, SUN J, FANG M J, et al. Occurrence of antibiotics in the main rivers of Shenzhen, China:association with antibiotic resistance genes and microbial community[J]. Science of the Total Environment, 2019,653:334-341.
|
[29] |
DU J, ZHAO H X, LIU S S, et al. Antibiotics in the coastal water of the South Yellow Sea in China:occurrence, distribution and ecological risks[J]. Science of the Total Environment, 2017,595:521-527.
|
[30] |
TANG J, SHI T Z, WU X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China:seasonal variation, potential source and risk assessment[J]. Chemosphere, 2015,122:154-161.
|
[31] |
ZHAO S N, LIU X H, CHENG D M, et al. Temporal-spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China[J]. Science of the Total Environment, 2016,569/570:1350-1358.
|
[32] |
XU W H, YAN W, LI X D, et al. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China:concentrations, mass loading and ecological risks[J]. Environmental Pollution, 2013,182:402-407.
|
[33] |
TONG L, HUANG S B, WANG Y X, et al. Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China[J]. Science of the Total Environment, 2014,497/498:180-187.
|
[34] |
陈卫平, 彭程伟, 杨阳, 等. 北京市地下水中典型抗生素分布特征与潜在风险[J]. 环境科学, 2017,38(12):5074-5080.
|
[35] |
HERNÁNDEZ F, CALıSTO-ULLOA N, GÓMEZ-FUENTES C, et al. Occurrence of antibiotics and bacterial resistance in wastewater and sea water from the Antarctic[J]. Journal of Hazardous Materials, 2019,363:447-456.
|
[36] |
TRAN N H, HOANG L, NGHIEM L D, et al. Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam[J]. Science of the Total Environment, 2019,692:157-174.
|
[37] |
DODGEN L K, KELLY W R, PANNO S V, et al. Characterizing pharmaceutical, personal care product, and hormone contamination in a karst aquifer of southwestern Illinois, USA, using water quality and stream flow parameters[J]. Science of the Total Environment, 2017,578:281-289.
|
[38] |
PAPAGEORGIOU M, KOSMA C, LAMBROPOULOU D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece[J]. Science of the Total Environment, 2016,543:547-569.
|
[39] |
SIEDLEWICZ G, BIAŁK-BIELIŃSKA A, BORECKA M, et al. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea-Summary of 3 years of studies[J]. Marine Pollution Bulletin, 2018,129(2):787-801.
|
[40] |
BAGNIS S, BOXALL A, GACHANJA A, et al. Characterization of the Nairobi River catchment impact zone and occurrence of pharmaceuticals:implications for an impact zone inclusive environmental risk assessment[J]. Science of the Total Environment, 2020,703:134925.
|
[41] |
YU Z H, ZHANG X B, NGO H H, et al. Removal and degradation mechanisms of sulfonamide antibiotics in a new integrated aerobic submerged membrane bioreactor system[J]. Bioresource Technology, 2018,268:599-607.
|
[42] |
WANG S, MA X X, LIU Y L, et al. Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants[J]. Bioresource Technology, 2020,302:122825.
|
[43] |
张金璐. 表面流人工湿地对养殖废水中抗生素和抗性基因去除效应研究[D]. 长沙:湖南农业大学, 2017.
|
[44] |
ZHANG X M, DAI Y, et al. Occurrence and removal of quinolone, tetracycline, and macrolide antibiotics from urban wastewater in constructed wetlands[J]. Journal of Cleaner Production, 2020,252:119677.
|
[45] |
MICHAEL S G, MICHAEL-KORDATOU I, NAHIM-GRANADOS S, et al. Investigating the impact of UV-C/H2O2 and sunlight/H2O2 on the removal of antibiotics, antibiotic resistance determinants and toxicity present in urban wastewater[J]. Chemical Engineering Journal, 2020,388:124383.
|
[46] |
PIRSAHEB M, HOSSAINI H, JANJANI H. Reclamation of hospital secondary treatment effluent by sulfate radicals based-advanced oxidation processes (SR-AOPs) for removal of antibiotics[J]. Microchemical Journal, 2020,153:104430.
|
[47] |
FANG S Y, ZHANG P, GONG J L, et al. Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation[J]. Chemical Engineering Journal, 2020,385:123400.
|
[48] |
杨玉. 新型磁性碳纳米复合材料对水中抗生素的去除研究[D]. 重庆:西南大学, 2019.
|
[49] |
KUMARI S, KHAN A A, CHOWDHURY A, et al. Efficient and highly selective adsorption of cationic dyes and removal of ciprofloxacin antibiotic by surface modified nickel sulfide nanomaterials:kinetics, isotherm and adsorption mechanism[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020,586:124264.
|
[50] |
ZHU S Y, LIU Y W, HUO Y, et al. Addition of MnO2 in synthesis of nano-rod erdite promoted tetracycline adsorption[J]. Scientific Reports, 2019,9(1):16906.
|
[51] |
MOUSSAVI G, ALAHABADI A, YAGHMAEIAN K, et al. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water[J]. Chemical Engineering Journal, 2013,217:119-128.
|
[52] |
AVCI A, ŁNCI O, BAYLAN N. Adsorption of ciprofloxacin hydrochloride on multiwall carbon nanotube[J]. Journal of Molecular Structure, 2020,1206:127711.
|
[53] |
XIANG Y J, YANG X, XU Z Y, et al. Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics:effects and mechanisms[J]. Science of the Total Environment, 2020,709:136079.
|
[54] |
LI H Q, HU J J, YAO L F, et al. Ultrahigh adsorbability towards different antibiotic residues on fore-modified self-functionalized biochar:competitive adsorption and mechanism studies[J]. Journal of Hazardous Materials, 2020,390:122127.
|
[55] |
CHEN H, GAO B, LI H. Functionalization, pH, and ionic strength influenced sorption of sulfamethoxazole on graphene[J]. Journal of Environmental Chemical Engineering, 2014,2(1):310-315.
|
[56] |
GAO Y, LI Y, ZHANG L, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide[J]. Journal of Colloid and Interface Science, 2012,368(1):540-546.
|
[57] |
BRASCHI I, BLASIOLI S, GIGLI L, et al. Removal of sulfonamide antibiotics from water:evidence of adsorption into an organophilic zeolite Y by its structural modifications[J]. Journal of Hazardous Materials, 2010,178(1/2/3):218-225.
|
[58] |
WANG C J, LI Z H, JIANG W T, et al. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite[J]. Journal of Hazardous Materials, 2010,183(1/2/3):309-314.
|
[59] |
HOSSEINI-BANDEGHARAEI A, ALAHABADI A, RAHMANI-Sani A, et al. Effect of nitrate and amine functionalization on the adsorption properties of a macroporous resin towards tetracycline antibiotic[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016,66:143-153.
|
[60] |
WANG T, PAN X, BEN W, et al. Adsorptive removal of antibiotics from water using magnetic ion exchange resin[J]. Journal of Environmental Sciences, 2017,52:111-117.
|
[61] |
GUO X Y, KANG C, F HUANG H L, et al. Exploration of functional MOFs for efficient removal of fluoroquinolone antibiotics from water[J]. Microporous and Mesoporous Materials, 2019,286:84-91.
|
[62] |
ZHUANG S T, LIU Y, WANG J L. Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution[J]. Journal of Hazardous Materials, 2020,383:121126.
|
[63] |
ZHUANG S T, CHEN R, LIU Y, et al. Magnetic COFs for the adsorptive removal of diclofenac and sulfamethazine from aqueous solution:adsorption kinetics, isotherms study and DFT calculation[J]. Journal of Hazardous Materials, 2020,385:121596.
|
[64] |
沈晓珊. 多孔芳香骨架材料的极性调控及其对水中抗生素的吸附与分离研究[D]. 长春:东北师范大学, 2019.
|
[65] |
ZHUANG Y, YU F, MA J, et al. Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel[J]. Journal of Colloid and Interface Science, 2017,507:250-259.
|
[66] |
WANG N F, XIAO W L, NIU B H, et al. Highly efficient adsorption of fluoroquinolone antibiotics using chitosan derived granular hydrogel with 3D structure[J]. Journal of Molecular Liquids, 2019,281:307-314.
|
[67] |
TIAN X M, LIU J X, WANG Y Q, et al. Adsorption of antibiotics from aqueous solution by different aerogels[J]. Journal of Non-Crystalline Solids, 2019,505:72-78.
|
[68] |
MIAO J H, WANG F H, CHEN Y J, et al. The adsorption performance of tetracyclines on magnetic graphene oxide:a novel antibiotics absorbent[J]. Applied Surface Science, 2019,475:549-558.
|
[69] |
NINWIWEK N, HONGSAWAT P, PUNYAPALAKUL P, et al. Removal of the antibiotic sulfamethoxazole from environmental water by mesoporous silica-magnetic graphene oxide nanocomposite technology:adsorption characteristics, coadsorption and uptake mechanism[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019,580:123716.
|
[70] |
SHI S, FAN Y W, HUANG Y M. Facile low temperature hydrothermal synthesis of magnetic mesoporous carbon nanocomposite for adsorption removal of ciprofloxacin antibiotics[J]. Industrial & Engineering Chemistry Research, 2013,52(7):2604-2612.
|
[71] |
LI L L, ZHENG X Y, CHI Y H, et al. Molecularly imprinted carbon nanosheets supported TiO2:strong selectivity and synergic adsorption-photocatalysis for antibiotics removal[J]. Journal of Hazardous Materials, 2020,383:121211.
|
[72] |
KUHN J, AYLAZ G, SARI E, et al. Selective binding of antibiotics using magnetic molecular imprint polymer (MMIP) networks prepared from vinyl-functionalized magnetic nanoparticles[J]. Journal of Hazardous Materials, 2020,387:121709.
|
[73] |
VALTCHEV M, PALM B S, SCHILLER M, et al. Development of sulfamethoxazole-imprinted polymers for the selective extraction from waters[J]. Journal of Hazardous Materials, 2009,170(2/3):722-728.
|
[74] |
TAN F, SUN D M, GAO J S, et al. Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution[J]. Journal of Hazardous Materials, 2013,244/245:750-757.
|
[75] |
LIU M K, LIU Y Y, BAO D D, et al. Effective removal of tetracycline antibiotics from water using hybrid carbon membranes[J]. Scientific Reports, 2017,7(1):43717.
|
[76] |
KHANDAY W A, AHMED M J, OKOYE P U, et al. Single-step pyrolysis of phosphoric acid-activated chitin for efficient adsorption of cephalexin antibiotic[J]. Bioresource Technology, 2019,280:255-259.
|
[77] |
JI L L, CHEN W, ZHENG S R, et al. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes[J]. Langmuir, 2009,25(19):11608-11613.
|
[78] |
宋奇轩. 改性多壁碳纳米管的制备及对磺胺甲恶唑的吸附研究[D]. 济南:济南大学, 2016.
|
[79] |
XIANG Y J, YANG X, XU Z Y, et al. Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics:effects and mechanisms[J]. Science of the Total Environment, 2020,709:136079.
|
[80] |
HUANG J S, ZIMMERMAN A R, CHEN H, et al. Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater[J]. Environmental Pollution, 2020,258:113809.
|
[81] |
WANG X D, YIN R L, ZENG L X, et al. A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments[J]. Environmental Pollution, 2019,253:100-110.
|
[82] |
LI M F, LIU Y G, ZENG G M, et al. Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment:a review[J]. Chemosphere, 2019,226:360-380.
|
[83] |
ZHANG R R, GU J, WANG X J, et al. Response of antibiotic resistance genes abundance by graphene oxide during the anaerobic digestion of swine manure with copper pollution[J]. Science of the Total Environment, 2019,654:292-299.
|
[84] |
郭美岑, 于晓彩, 王力萍, 等. CTAB改性沸石对养殖废水中四环素污染的吸附研究[J]. 大连海洋大学学报, 2019,34(4):595-601.
|
[85] |
LU Y P, JIANG M, WANG C W, et al. Impact of molecular size on two antibiotics adsorption by porous resins[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014,45(3):955-961.
|
[86] |
KONG Y, WANG L, GE Y Y, et al. Lignin xanthate resin-bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water[J]. Journal of Hazardous Materials, 2019,368:33-41.
|
[87] |
LI Q M, JI M, LI X, et al. Efficient co-removal of copper and tetracycline from aqueous solution by using permanent magnetic cation exchange resin[J]. Bioresource Technology, 2019,293:122068.
|
[88] |
SEO P W, KHAN N A, JHUNG S H. Removal of nitroimidazole antibiotics from water by adsorption over metal-organic frameworks modified with urea or melamine[J]. Chemical Engineering Journal, 2017,315:92-100.
|
[89] |
WANG B, LV X L, FENG D W, et al. Highly stable Zr(Ⅳ)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. Journal of the American Chemical Society, 2016,138(19):6204-6216.
|
[90] |
WANG J L, ZHUANG S T. Covalent organic frameworks (COFs) for environmental applications[J]. Coordination Chemistry Reviews, 2019,400:213046.
|
[91] |
MA J, YANG M X, YU F, et al. Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel[J]. Scientific Reports, 2015,5:13578.
|
[92] |
CANTARELLA M, CARROCCIO S C, DATTILO S, et al. Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water[J]. Chemical Engineering Journal, 2019,367:180-188.
|
[93] |
XIONG W P, ZENG Z T, LI X, et al. Multi-walled carbon nanotube/amino-functionalized MIL-53(Fe) composites:remarkable adsorptive removal of antibiotics from aqueous solutions[J]. Chemosphere, 2018,210:1061-1069.
|
[94] |
ZHU Z Y, ZHANG M C, WANG W, et al. Efficient and synergistic removal of tetracycline and Cu(Ⅱ) using novel magnetic multi-amine resins[J]. Scientific Reports, 2018,8:4762.
|
[95] |
黄丹丹. 废活性炭再生处置过程中的环境管理及治理措施研究[J]. 污染防治技术, 2019,32(5):32-34.
|
[96] |
伏晓林, 贾彪, 王占鑫, 等. 活性炭再生方法及其在水处理中的应用研究进展[J]. 工业用水与废水, 2020,51(3):1-5.
|
[97] |
张国芳. 不同水处理工艺对典型喹诺酮类抗生素的去除规律及潜在风险评估[J]. 净水技术, 2020,39(6):106-111.
|
[98] |
崔鹏. 水处理工艺中氟喹诺酮类物质分布的检测研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
|