Citation: | LIU Yan, YANG Min, CHEN Hong, JIANG Zhao-hui, ZHAO Wen-yu, WANG Hong, ZHANG Jun-ya. ENHANCEMENT AND MECHANISM OF MIXED ALGAE CULTIVATION FOR TREATMENT OF KITCHEN WASTE DIGESTATE EFFLUENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 54-60,67. doi: 10.13205/j.hjgc.202103008 |
[1] |
ZHANG C S, SU H J, BAEYENS J, et al. Reviewing the anaerobic digestion of food waste for biogas production[J]. Renewable and Sustainable Energy Reviews, 2014, 38:383-392.
|
[2] |
OSWALD W J, GOTAAS H B, GOLUEKE C G, et al. Algae in waste treatment[J]. Sewage and Industrial Wastes, 1957, 29(4):437-455.
|
[3] |
KHAN A, SHAHID A, CHENG H, et al. Omics technologies for microalgae-based fuels and chemicals; challenges and opportunities[J]. Protein and Peptide Letters, 2018, 25(2):99-107.
|
[4] |
CHENG J, YE Q, XU J, et al. Improving pollutants removal by microalgae Chlorella PY-ZU1 with 15% CO2 from undiluted anaerobic digestion effluent of food wastes with ozonation pretreatment[J]. Bioresource Technology, 2016, 216:273-279.
|
[5] |
BIDDANDA B, BENNER R. Carbon nitrogen and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton[J]. Limnology and Oceanography, 1997, 42:506-518.
|
[6] |
LÓPEZ-SERNA R, GARCÍA D, BOLADO S, et al. Photobioreactors based on microalgae-bacteria and purple phototrophic bacteria consortia:a promising technology to reduce the load of veterinary drugs from piggery wastewater[J]. Science of the Total Environment,2019, 692:259-266.
|
[7] |
PRATT R. Studies on Chlorella vulgaris.V. some properties of the growth-inhibitor formed by Chlorella cells[J]. American Journal of Botany, 1942, 29(2):142-148.
|
[8] |
冯思然,朱顺妮,王忠铭. 微藻污水处理研究进展[J].环境工程, 2019,37(4):57-62.
|
[9] |
SHAHID A,MALIK S,ZHU H, et al. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation:a review[J]. The Science of the Total Environment, 2020,704:135303.
|
[10] |
CHINNASAMY S, BHATNAGAR A, HUNT R W, et al. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications[J]. Bioresource Technology, 2010, 101:3097-3105.
|
[11] |
HUY M, KUMAR G, KIM H W, et al. Photoautotrophic cultivation of mixed microalgae consortia using various organic waste streams towards remediation and resource recovery[J]. Bioresource Technology, 2018, 247:576-581.
|
[12] |
MICHELON W, DA SILVA M L B, MEZZARI M P, et al. Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate[J]. Applied Biochemistry and Biotechnology, 2016, 178:1407-1419.
|
[13] |
CARDINALE B J. Biodiversity improves water quality through niche partitioning[J]. Nature, 2012, 472:86-89.
|
[14] |
PHATARPEKAR P V, SREEPADA R A, PEDNEKAR C, et al. A comparative study on growth performance and biochemical composition of mixed culture of Isochrysis galbana and Chaetoceros calcitrans with monocultures[J]. Aquaculture, 2000, 181(1):141-155.
|
[15] |
UCHIDA T, TODA S, MATSUYAMA Y, et al. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture[J]. Journal of Experimental Marine Biology and Ecology, 1999, 241(2):285-299.
|
[16] |
范婧,周北海,张鸿涛,等. 再生水补充经管水体中藻类的生长比较[J].环境科学研究, 2012,25(5):573-577.
|
[17] |
QIAN Y P,LI X T,TIAN R N. Effects of aqueous extracts from the rhizome of Pontederia cordata on the growth and interspecific competition of two algal species[J]. Ecotoxicology and Environmental Safety, 2019, 168:401-407.
|
[18] |
ZHANG T Y, YU Y, WU Y H, et al. Inhibitory effects of soluble algae products (SAP) released by Scenedesmus sp LX1 on its growth and lipid production[J]. Bioresource Technology, 2013, 146:643-648.
|
[19] |
WANG M, YANG H, ERGAS S J, et al. A novel shortcut nitrogen removal process using an algal-bacterial consortium in a photo-sequencing batch reactor (PSBR)[J]. Water Research, 2015, 87:38-48.
|
[20] |
YANG S, XU J, WANG Z M, et al. Cultivation of oleaginous microalgae for removal of nutrients and heavy metals from biogas digestates[J]. Journal of Cleaner Production, 2017, 164:793-803.
|
[21] |
刘祥,王婧瑶,吴娟娟,等. 微藻固定化条件优化及其污水氨氮去除潜力分析[J]. 环境科学,2019, 40(7):3126-3134.
|
[22] |
罗智展,舒琥,许瑾,等. 利用微藻处理污水的研究进展[J]. 水处理技术, 2019, 45(10):17-39.
|
[23] |
TORU Y,NAOYA S,KAZUTOSHI I, et al. Polyethyleneimine-induced astaxanthin accumulation in the green alga Haematococcus pluvialis by increased oxidative stress[J]. Journal of Bioscience and Bioengineering, 2019, 128(6):751-754.
|
[24] |
WHITTON R, MÉVEL A L, PIDOU M, et al. Influence of microalgal N and P composition on wastewater nutrient remediation[J]. Water Research, 2016, 91:371-378.
|
[25] |
ZHOU W G, MIN M, LI Y C, et al. A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation[J]. Bioresource Technology, 2012, 110:448-455.
|
[26] |
SINGH G, THOMAS P B. Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor[J]. Bioresource Technology, 2012, 117:80-85.
|
[27] |
WÁGNER D S, VALVERDE-PÉREZ B, SAEBØ M, et al. Towards a consensus-based biokinetic model for green microalgae-The ASM-A[J]. Water Research, 2016, 103:485-499.
|
[28] |
WU Y H, ZHU S F, YU Y, et al. Mixed cultivation as an effective approach to enhance microalgal biomass and triacylglycerol production in domestic secondary effluent[J]. Chemical Engineering Journal, 2017, 328:665-672.
|
[29] |
MOHAMMAD R,QU M X,MD A A, et al. Investigating the potentiality of Scenedesmus obliquus and Acinetobacter pittii partnership system and their effects on nutrients removal from synthetic domestic wastewater[J]. Bioresource Technology, 2020, 299:122571.
|
[30] |
ANSARI F A,RAVINDRAN B,GUPTA S K, et al. Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae[J]. Journal of Environmental Management, 2019, 240:293-302.
|
[31] |
刘峰. 雨生红球藻优良藻株的诱变选育及其培养基的氮磷浓度的优化[D].青岛:中国海洋大学,2015.
|
[1] | YANG Yi, ZHAO Rui, ZHENG Zhenze, SHU Qilin, LIU Wei. FLUORESCENT COMPONENTS, MOLECULAR PROPERTIES AND SOURCES OF DOM IN SECONDARY EFFLUENT OF MUNICIPAL SEWAGE TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 66-72. doi: 10.13205/j.hjgc.202412009 |
[2] | LIU Yueting, ZHANG Qiang, JIANG Xiaohui, JI Yajun, YUAN Xiaohong, XIE Wenhao, ZHENG Lielong, LUO Jiaxin. SPATIAL-TEMPORAL CHARACTERISTICS OF CARBON EMISSIONS IN URBAN SEWAGE SYSTEM IN XI’AN AND ITS DOMINANT DRIVING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 40-49. doi: 10.13205/j.hjgc.202411005 |
[3] | LI Xuxia, WANG Yudong, XIAO Youpeng, XU Xu, WANG Haipeng, CHEN Yimeng, LIN Junchuan, HUANG Guisong, HUANG Zhenguo, SUN Ping, MAI Youquan, YANG Shangbo, XU Wang. QUALITY MONITORING OF SHENZHEN’S COASTAL WATERS BY SATELLITE AND ITS SPATIOTEMPORAL VARIATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 243-252. doi: 10.13205/j.hjgc.202401031 |
[4] | HE Tian, XUE Chonghua, SUN Jiarong, HAN Songlei, LÜ Yongpeng, LI Junqi, WANG Jianlong. RESEARCH PROGRESS ON FORMS AND INFLUENCING FACTORS OF NITROGEN AND PHOSPHORUS IN PARTICULATE MATTERS IN URBAN STORMWATER RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 61-71. doi: 10.13205/j.hjgc.202408008 |
[5] | QIU Boran, XIA Yijia, BI Jingran, YU Tao, LIN Tong, ZHANG Hanqi, MA Fengmin, ZHEN Guangyin. CARBON EMISSION REDUCTION POTENTIAL FROM CHINA MUNICIPAL SOLID WASTE SORTING TREATMENT BASED ON THE “TWO NETWORKS INTEGRATION” MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 183-191. doi: 10.13205/j.hjgc.202405023 |
[6] | GENG Jiao, WANG Yang, HU Shugang, WEI Yanjie, SUN Fei, YUAN Peng. WQI-BASED WATER QUALITY ASSESSMENT AND SPATIAL-TEMPORAL CHANGE IN PLAIN RIVER NETWORK AREAS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 187-193,209. doi: 10.13205/j.hjgc.202306025 |
[7] | YANG Yiqing, ZHANG Yuxiang, ZHANG Yufei, LI Yaohuang, WU Mingyu, ZHANG Nan, CHEN Xiaoqiang. GAS PRODUCTION AND LEACHATE PROPERTIES OF MUNICIPAL SOLID WASTE WITH CONTINUOUS INJECTION OF CONCENTRATED NF LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 148-154. doi: 10.13205/j.hjgc.202303020 |
[8] | WANG Zhenhua, WU Juan, SONG Jianguo, BAI Jie. EFFECTS OF THERMAL HYDROLYSATES FROM MUNICIPAL SOLID WASTE ON SOIL ENZYME ACTIVITY AND SPINACH GROWTH[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 126-131. doi: 10.13205/j.hjgc.202203019 |
[9] | SHI Zifu, ZHANG Xingqun, ZHOU Yonggang, HUANG Qunxing. OPTIMIZATION OF INCINERATORS FOR HIGH CALORIFIC VALUE DOMESTIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 109-115. doi: DOI:10.13205/j.hjgc.202207016 |
[10] | HE Jia-ni, LIU Yi-li, LI Zhu-lin, QIU Zhao-wen. ENERGY CONSUMPTION ANALYSIS OF MUNICIPAL SOLID WASTE CLASSIFIED TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 136-142. doi: 10.13205/j.hjgc.202110019 |
[11] | WU Fan, NIU Dong-jie. REVIEW ON PREDICTIVE MODELS FOR MUNICIPAL SOLID WASTE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 128-133. doi: 10.13205/j.hjgc.202104020 |
[12] | CHEN Yu-di, WANG Jie, CHEN Wei-tian, MA Xie-yao, HU Xiao-dong. SPATIAL AND TEMPORAL CHANGES OF AEROSOL IN YANGTZE RIVER DELTA AND ITS METEOROLOGICAL INTERPRETATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 120-127. doi: 10.13205/j.hjgc.202112018 |
[13] | XIANG Hong-lin, LIU Li, LIANG Guo-bin, ZHANG Huan-wei, LI Cong-ming, ZHOU Chang, HAN Si-yu, JIANG Jian-guo. PREPARATION OF RDF BY HYDROLYSIS RESIDUES FROM ORGANIC WASTE AND PROPERTIES OPTIMIZATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 189-194,147. doi: 10.13205/j.hjgc.202103027 |
[14] | YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016 |
[15] | REN Zhong-shan, CHEN Ying, WANG Yong-ming, TENG Jing-jie, QIAO Peng. ANALYSIS OF INFLUENCE OF DOMESTIC WASTE CLASSIFICATION ON DEVELOPMENT OF WASTE INCINERATION POWER GENERATION INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 150-153,206. doi: 10.13205/j.hjgc.202106022 |
[16] | SUN Jin, TAN Xin, ZHANG Shu-guang, JI Tao. COMPOSITION AND MELTING CHARACTERISTICS OF FLY ASH FROM 14 MSWI PLANTS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 124-128. doi: 10.13205/j.hjgc.202110017 |
[17] | SUN Xiao-jie, WANG Chun-lian, LI Qian, ZHANG Hong-xia, YE Yu-hang. DEVELOPMENT AND EVOLUTION OF CHINA’S DOMESTIC WASTE CLASSIFICATION POLICY SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 65-70. doi: 10.13205/j.hjgc.202008011 |
[18] | CHEN Feng, CHEN Dan, HU Yong-you. ANALYSIS ON INFLUENCING FACTORS OF EFFECT OF HIGH TEMPERATURE AEROBIC BIOLOGICAL DRYING PROCESS OF GARBAGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 141-145. doi: 10.13205/j.hjgc.202001022 |
[20] | Ding Jing, Lei Yang. RESEARCH ON SEMI-AEROBIC BIOREACTOR LANDFILL SYSTEM: LEACHATE CHARACTERISTICS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 6-10. doi: 10.13205/j.hjgc.201503002 |
1. | 孙广东,马俊怡,郝书,董贺,赵心茹,柴强龙,党岩. 畜禽粪污厌氧消化产甲烷效能的关键影响因素研究进展. 环境工程. 2025(03): 114-129 . ![]() | |
2. | 王云琦,杜玉莹,梅红,汪炎. 厌氧消化酸累积条件下强化产甲烷研究与应用. 工业用水与废水. 2024(01): 1-5+26 . ![]() | |
3. | 马芷萱,南亚萍,余涛,廖驰,杨丹,于莉芳,郑兰香. 颗粒活性炭强化葡萄酒生产废水与剩余污泥厌氧共消化的影响. 环境工程学报. 2024(08): 2210-2218 . ![]() | |
4. | 王宁,李美,李媛,赵智强. 乙醇发酵预处理耦合生物炭强化城镇有机固废厌氧产甲烷. 能源环境保护. 2024(05): 166-174 . ![]() | |
5. | 姜琪,张波,苏艳,王高骏,王璟,杨阳,李倩,陈荣. 餐厨垃圾生物炭强化餐厨废水甲烷发酵效能与作用机制. 环境工程技术学报. 2024(06): 1867-1876 . ![]() | |
6. | 刘婉玉. 生物炭固体酸强化污泥厌氧消化的研究进展. 广东化工. 2023(23): 75-77 . ![]() |