Citation: | DONG Yi-hua, ZHANG Xin-yue, CHEN Feng, LI Liang, SHI Xiao-chun. CONSTRUCTION OF ECOLOGICAL FLOATING ISLAND AND RESTORATION OF CAMPUS ARTIFICIAL LAKE EUTROPHICAITON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 90-96. doi: 10.13205/j.hjgc.202103013 |
[1] |
LIAO M N, YU G, GUO Y. Eutrophication in Poyang Lake (Eastern China) over the last 300 years in response to changes in climate and lake biomass[J]. PLoS One, 2017, 12(1):1-22.
|
[2] |
SCHOEN M E, XUE X B, WOOD A, et al. Cost, energy, global warming, eutrophication and local luman health impacts of community water and sanitation service options[J]. Water Research, 2017, 109(2):186-195.
|
[3] |
JIANG Q T, HE J Y, WU J P, et al. Assessing the severe eutrophication status and spatial trend in the coast waters of Zhejiang province (China)[J]. 2018, 64(1):3-17.
|
[4] |
陈昭明, 王伟, 赵迎, 等. 三峡水库支流水体富营养化现状及防治策略[J]. 环境工程, 2019, 37(4):32-37.
|
[5] |
李志刚, 朱江. 现代大学校园水景规划设计探讨[J]. 安徽农业科学, 2011, 39(29):18022-18025.
|
[6] |
VYSTAVNA Y, HEJZLAR J, KOPÁǦEK. Long-term trends of phosphorus concentrations in an artificial lake:socio-economic and climate drivers[J]. PLoS One, 2017, 12(10):1-18.
|
[7] |
康孟新, 疏童. 北方高校景观水体富营养化评价研究[J]. 东北电力大学学报, 2016, 36(5):68-72.
|
[8] |
周云龙, 黄健峰, 林嘉. 华南师范大学人工湖水体富营养化及其对策研究[J]. 华南师范大学学报(自然科学版), 2010(1):82-87.
|
[9] |
BAASTRUP-SPOHR L, SAND-JENSEN K, OLESEN S C H, et al. Recovery of lake vegetation following reduced eutrophication and acidification[J]. Freshwater Biology, 2017, 62(11):1847-1857.
|
[10] |
SMOL M. The use of membrane processes for the removal of phosphorus from wastewater[J]. Desalination and Water Treatment, 2018, 128(1):397-406.
|
[11] |
WANG S D, KONG L J, LONG J Y, et al. Adsorption of phosphorus by calcium-flour biochar:isotherm, kinetic and transformation studies[J]. Chemosphere, 2018, 195(3):666-672.
|
[12] |
NOYMA N P, MAGALHÃES L D, FURTADO L L, et al. Controlling cyanobacterial blooms through effective flocculation and sedimentation with combined use of flocculants ans phosphorus adsorbing natural soil and modified clay[J]. Water Research, 2016, 97(6):26-38.
|
[13] |
岳云征. 氧化剂对藻毒素的作用效果对比[J]. 化学工程与装备, 2016(9):44-45.
|
[14] |
ANSARI A A, TRIVEDI S, K, KHAN F A, et al. Phytoremediation of eutrophic waters[J]. Phytoremediation, 2015, 28(1):41-50.
|
[15] |
付惠玲. 新材料生物膜反应器净化富营养化水及其功能菌群解析[D]. 金华:浙江师范大学, 2016.
|
[16] |
LIU J L, LIU J K, ANDERSON J T, et al. Potential of aquatic macrophytes and artificial floating island for removing contaminants[J]. Plant Biosystems, 2016, 150(4):1-8.
|
[17] |
NATHALIE M G. The floating island project:self-organizing complexity[J]. Proceedings, 2017, 173(1):1-3.
|
[18] |
YEH N, YEH P, CHANG Y H. Artificial floating islands for environmental improvement[J]. Renewable and sustainable energy reviews, 2015, 47(7):616-622.
|
[19] |
孙真, 陈涵肖, 付尚礼, 等. 生态浮岛处理微污染水体综述[J]. 环境工程, 2018, 36(12):10-15.
|
[20] |
张莹琦, 贺菊花, 程刚. 生态浮岛技术用于河湖污染修复进展研究[J]. 环境科学与管理, 2015(6):138-142.
|
[21] |
陈乐, 朱静. 泽泻科泽泻属和慈姑属的研究[J]. 哈尔滨师范大学自然科学学报, 2010, 26(5):92-93
, 98.
|
[22] |
ASAEDA T, SIONG K. Dynamics of growth, carbon and nutrient translocation in Zizania latifolia[J]. Ecological Engineering, 2008, 32(2):156-165.
|
[23] |
WANG P H, ZHANG H, ZUO J, et al. A hardy plant facilitates nitirogen removal via microbial communities in subsurface flow constructed wetlands in winter[J]. Scientific Reports, 2016, 9:1-13.
|
[24] |
LIU J, YI N K, WANG S, et al. Impact of plant species on spatial distribution of metabolic potential and functional diversity of microbial communities in a constructed wetland treating aquaculture wastewater[J]. 2016, 94(9):546-573.
|
[25] |
陈毓华, 汪俊三. 华南地区11种高等水生维管植物净化城镇污水效益评价[J]. 农村生态环境, 1995(1):26-29.
|
[26] |
国家环境保护总局. 《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002.
|
[27] |
周振兴, 黄田, 张劲, 等. 浮床栽培茭白的生物学特征及水质净化作用研究[J]. 四川环境, 2007(5):1-4.
|
[28] |
杨可昀, 宋海亮, 黄诗蓓, 等. 根系分泌物调控对人工湿地去除雌激素的影响[J]. 环境科学研究, 2016, 29(1):59-66.
|
[1] | KONG Lingrui, LI Xinjue, ZHENG Ru, ZHANG Kuo, LIU Sitong. ENHANCING THE PERFORMANCE OF PARTIAL NITRIFICATION-ANAMMOX BY USING HYDROTALCITE COMPOSITE BIOFILM CARRIERS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 16-23. doi: 10.13205/j.hjgc.202401003 |
[2] | YANG Shenhua, ZHANG Lujing, PENG Yongzhen, PANG Hongtao, JIANG Leyong, SUN Shihao, ZHAI Dandan. RESEARCH ADVANCES OF ENHANCING BIOFILM FORMATION OF ANAMMOX[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 1-8. doi: 10.13205/j.hjgc.202401001 |
[3] | ZHAO Jinan, LIU Siyun, SHAN Yingqi, LIU Chang, TIAN Mengyuan, LI Bolin. RAPID START-UP AND MICROBIAL COMMUNITY ANALYSIS OF A SULFUR AUTOTROPHIC DENITRIFICATION COUPLED ANAEROBIC AMMONIA OXIDATION DENITRIFICATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 9-16. doi: 10.13205/j.hjgc.202406002 |
[4] | SHI Xiaobei. RESEARCH PROGRESS ON IRON ENHANCED ANAEROBIC AMMONIA OXIDATION REACTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 231-236. doi: 10.13205/j.hjgc.202305030 |
[5] | LIU Changyuan, HAN Rui, YI Longqiang, LEI Jiahui, ZHANG Cuiya, WU Yinghai. REVIEW ON ENHANCEMENT OF ANAMMOX PROCESS BY QUORUM SENSING SIGNAL MOLECULES AHLs[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 251-258. doi: 10.13205/j.hjgc.202308032 |
[6] | ZHANG Chi, SHA Hongjü, WANG Chao, LÜ Ze, HU Xiaomin. MICROBIAL COMMUNITY STRUCTURE ENHANCEMENT BY ELECTRIC FIELD AT ROOM TEMPERATURE AND HIGH NITROGEN LOAD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 39-44. doi: 10.13205/j.hjgc.202305006 |
[7] | MEN Yan, LIU Lingjie, ZHU Yaxin, BI Yanmeng, MENG Fansheng, YU Jingjie, WANG Shaopo. EFFECT OF ORGANIC MATTER CONCENTRATION VARIATION ON NITROGEN REMOVAL PERFORMANCE AND BACTERIA COMMUNITY STRUCTURE IN A HYBRID SBR ANAMMOX SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 83-90. doi: 10.13205/j.hjgc.202308011 |
[8] | LI Cong, DU Rui, PENG Yongzhen. NITROGEN REMOVAL EFFICIENCY AND CARBON SOURCE UTILIZATION CHARACTERISTICS OF PARTIAL DENITRIFICATION COUPLING ANAMMOX PROCESSES WITH DIFFERENT SLUDGE AGGREGATION MODES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 1-9. doi: 10.13205/j.hjgc.202309001 |
[9] | SONG Xiaokang, YIN Fangfang, DING Min, ZHU Cheng, WU Peng, LIU Wenru. NITROGEN REMOVAL FROM MUNICIPAL WASTEWATER BY ANAEROBIC AMMONIA OXIDATION: CHALLENGES AND SOLUTIONS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 235-243. doi: 10.13205/j.hjgc.202204033 |
[10] | ZHANG Ke, TIAN Shuangchao, DOU Xueyan, ZHANG Chang, DONG Lixin, ZHU Jinliang, XIAO Benyi, LIU Qixin, LIU Jianwei, LIU Junxin. ANAEROBIC/AEROBIC BIOLOGICAL CONTACT OXIDATION PROCESS COUPLED WITH MICROBIAL FUEL CELL TO TREAT RURAL DOMESTIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 139-146. doi: 10.13205/j.hjgc.202203021 |
[11] | GUO Yankai, GUO Jinyan, ZHAO Juan, MA Zhiyuan, NIU Yanyan, YANG Jiaqi, LIAN Jing. PREPARATION OF PMo12/rGO/PPy ANODE BY ELECTRODEPOSITION FOR MICROBIAL FUEL CELLS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 147-153. doi: 10.13205/j.hjgc.202203022 |
[12] | ZHANG Zong-bin, YUE Zheng-bo, WU Jing-hang, WANG Jin. CHARACTERISTICS ANALYSIS OF AN ELECTRICITY-PRODUCING STRAIN SHEWANELLA XMS-1 FROM MARINE SEDIMENTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 33-39. doi: 10.13205/j.hjgc.202101004 |
[13] | TANG Xin-hua, JIA Yu-yang, CUI Yang, CHEN Mo-yu, LIU Lei. ENHANCEMENT OF MICROBIAL FUEL CELL PERFORMANCE BY Fe-S-N CO-DOPED POROUS CARBON CATHODE CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 163-170. doi: 10.13205/j.hjgc.202110023 |
[14] | SHI Yu-cui, LUO Xin-yi, TANG Gang, YE Yan-chao, YOU Shao-hong. RESEARCH PROGRESS AND PROSPECTS OF CONSTRUCTED WETLAND-MICROBIAL FUEL CELL COUPLING SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 25-33. doi: 10.13205/j.hjgc.202108004 |
[15] | XIANG Xi-yi, YU Ji-hong, NIU Ma-dou, HU Xiao-min. EFFECT OF PULSED ELECTRIC AND DIRECT CURRENT FIELD ON NITROGEN REMOVAL BY AN ANAMMOX REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 108-112,233. doi: 10.13205/j.hjgc.202108014 |
[16] | GAO Yan-ming, WANG Ting, LI Jie-ling, WEI Shi-cheng, LIU Guang-li, LUO Hai-ping, ZHANG Ren-duo. ELECTRICITY GENERATION PROPERTIES OF MICROBIAL FUEL CELL WITH CORN COB ACID PYROLYSIS SOLUTION AS THE SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 127-134. doi: 10.13205/j.hjgc.202111016 |
[17] | MA Xiao-qian, ZHANG Zhe, LIU Chao, WANG Jun-jie, WANG Jia-lin, YU Yi, CAO Rui-jie, SHI Zhi-li, WANG Ya-yi. TREATMENT OF LEACHATE FROM MUNICIPAL SOLID WASTE INCINERATION PLANT BY COMBINED ANAMMOX PROCESS: NITROGEN REMOVAL AND MICROBIAL MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 110-118. doi: 10.13205/j.hjgc.202111014 |
[18] | FU Jin-xiang, QIAN Jie, ZHANG Li, YU Peng-fei, LUO Di, YOU Kun. EFFECT OF HIGH CONCENTRATION PHOSPHORUS ON ANAEROBIC AMMONIA OXIDATION PERFORMANCE AND GRANULAR SLUDGE PROPERTY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 98-102,109. doi: 10.13205/j.hjgc.202011016 |
[19] | CAI Ze-xiang, XIAO Long-wen, ZHANG Da-chao, SU Hao, LI Yong-chao, LAI Cheng. NITROGEN REMOVAL PERFORMANCE OF A NOVEL MULTI-SETTLER ANAEROBIC SPOUTED BED REACTOR VIA ANAEROBIC AMMONIA OXIDATION (ANAMMOX) PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 70-75,83. doi: 10.13205/j.hjgc.202005013 |
[20] | Qi Jiaoqin, Zhu Liang, Xu Xiangyang, Kong Yun, Cai Rui. MICROBIAL FUEL CELLS AND ITS APPLICATION IN BIOLOGICAL WASTEWATER/WASTE TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 1-5. doi: 10.13205/j.hjgc.201503001 |
1. | 王婷婷,盛昌栋. 城镇污水污泥低温氧化放热特性的恒温量热分析. 环境工程. 2021(10): 110-115+123 . ![]() |