Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 39 Issue 3
Jul.  2021
Turn off MathJax
Article Contents
LI Huai-bo, ZHENG Kai-kai, WANG Yan, GAO Jun-xian, WANG Shuo, LI Ji. OPERATION REGULATION OF WASTEWATER TREATMENT PLANT WITH LOW CARBON-TO-NITROGEN RATIO INFLUENT BASED ON WHOLE PROCESS ANALYSIS METHOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 97-102,135. doi: 10.13205/j.hjgc.202103014
Citation: LI Huai-bo, ZHENG Kai-kai, WANG Yan, GAO Jun-xian, WANG Shuo, LI Ji. OPERATION REGULATION OF WASTEWATER TREATMENT PLANT WITH LOW CARBON-TO-NITROGEN RATIO INFLUENT BASED ON WHOLE PROCESS ANALYSIS METHOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 97-102,135. doi: 10.13205/j.hjgc.202103014

OPERATION REGULATION OF WASTEWATER TREATMENT PLANT WITH LOW CARBON-TO-NITROGEN RATIO INFLUENT BASED ON WHOLE PROCESS ANALYSIS METHOD

doi: 10.13205/j.hjgc.202103014
  • Received Date: 2020-03-10
    Available Online: 2021-07-19
  • In order to make the effluent of a wastewater treatment plant(WWTP) reach the emission standard, the whole process test was carried out. After analyzing the changes of pollutants along the process as well as the characteristics of activated sludge and assessing the current status of process operation, basic data for optimal regulation was provided. The study found that the BOD5 to total nitrogen (TN) ratio of the influent was only 2.45, which belonged to low carbon-to-nitrogen ratio influent. In addition, the activated sludge characteristics test found that the denitrification potential was 9.0 mg/(g·h), and the relative abundance of denitrifying bacteria was high. Therefore, insufficient carbon source in the influent and unreasonable dosing site of external carbon source were the main reasons for the poor nitrogen removal effect of the WWTP. The total nitrogen of the effluent was reduced from 32.0 mg/L to 12.7 mg/L by changing the carbon source dosing site, reducing the aeration volume of the biochemical reaction tank and increasing the amount of carbon source dosing, which realized the standard discharge of total nitrogen. In addition, the anaerobic phosphorus release potential increased from 1.3 mg/(g·h) to 2.6 mg/(g·h), which meant that the biological phosphorus removal capacity had also been greatly improved. This study provided a way to discover and solve problems in WWTPs with effluent exceeding the standard, which provided references for controlling operation and reaching standard for discharge of WWTPs with low carbon-to-nitrogen ratio influent.
  • loading
  • [1]
    祝成成,徐莎. 一种改良双污泥颗粒系统强化低碳氮比污水脱氮除磷的新工艺[J]. 工业安全与环保,2018,44(3):99-103.
    [2]
    陈燕平,陈小波,徐程, 等. 水体富营养化植物控制工程技术方法[J]. 人民珠江,2018,39(6):41-46.
    [3]
    LI L, DONG Y H, QIAN G S, et al. Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen[J]. Bioresource Technology, 2018, 258:168-176.
    [4]
    FENG L J, RONG J, ZHEN Z, et al. Simultaneous nitrification-denitrification and microbial community profile in an oxygen-limiting intermittent aeration SBBR with biodegradable carriers[J]. Biodegradation, 2018, 29(5):473-486.
    [5]
    张岩,马翔山,郭威, 等. 新型IEM-UF耦合短程硝化反硝化系统脱氮特性[J]. 中国环境科学,2018,38(2):542-550.
    [6]
    唐建国,张悦,梅晓洁. 城镇排水系统提质增效的方法与措施[J]. 给水排水,2019,55(4):30-38.
    [7]
    王春喜,余关龙,张登祥, 等. 固定化反硝化菌联合固体碳源小球处理低碳氮比污水的性能研究[J]. 环境污染与防治,2018,40(8):870-874.
    [8]
    马海良,侯雅如, 李珊珊. 工业废水排放与经济增长脱钩的省际差异研究[J]. 中国人口·资源与环境,2017,27(11):185-192.
    [9]
    李斐,宋英豪,王敏, 等. 水解反硝化+A/O工艺处理低碳氮比城镇废水试验研究[J]. 环境工程,2016,34(11):23-28.
    [10]
    刘文如,顾广发,宋小康, 等. 不同溶解氧浓度下硝化工艺中微生物种群结构对比[J]. 环境科学,2019,40(8):3706-3712.
    [11]
    吴代顺,方燕蓝. 氧化沟工艺污水处理厂的活性污泥特性分析[J]. 中国给水排水,2018,34(11):109-113.
    [12]
    罗固源,张园,许晓毅. SUFR系统中活性污泥特性及反硝化除磷稳定性[J]. 环境科学研究,2011,24(1):85-89.
    [13]
    FOCHT D D, CHANG A C. Nitrification and denitrification processes related to waste water treatment[J]. Advances in Applied Microbiology, 1975, 19:153-186.
    [14]
    陈明飞,郑凯凯,王燕, 等. 基于全流程分析的污水厂高硝态氮进水优化运行[J]. 中国给水排水,2019,35(17):118-122

    ,128.
    [15]
    闫沛涵,兰书焕,涂卫国, 等. 反硝化菌YYD4强化生物滤池处理低碳氮比污水效果研究[J]. 环境科学与技术,2019,42(7):83-87.
    [16]
    牟晓杰,兴土,仝川, 等. 人为干扰对闽江河口湿地土壤硝化-反硝化潜力的影响[J]. 中国环境科学,2013,33(8):1413-1419.
    [17]
    苗志加. 强化生物除磷系统聚磷菌的富集反硝化除磷特性[D].北京:北京工业大学, 2013.
    [18]
    钱萌萌,陈静,康紫薇, 等.SBR污水处理工艺中磷的转化及去除机理研究[J]. 广东化工,2018,45(20):17-19.
    [19]
    杨青,甘树应,刘遂庆. 二沉池反硝化浮泥产生机理及避免措施[J]. 中国给水排水,2002,18(10):68-70.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (235) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return