Citation: | ZHANG Ze, ZHAO Hong-jun, MENG Jie, HONG Chen, LI Yi-fei. RESEARCH PROGRESS OF BIOMASS PYROLYSIS AND BIO OIL UPGRADING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 161-171. doi: 10.13205/j.hjgc.202103023 |
[1] |
GOYAL H B, SEAL D, SAXENA R C. Bio-fuels from thermochemical conversion of renewable resources:a review[J]. Renewable & Sustainable Energy Reviews, 2008,12(2):504-517.
|
[2] |
ELLIOTT D C. Thermochemical Processing of Biomass:conversion into Fuels, Chemicals and Power[M]. Isr Med J,2011.
|
[3] |
李全林.新能源与可再生能源[M].南京:东南大学出版社,2009.
|
[4] |
ANEX R P, ADEN A, KAZI F K, et al. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways[J]. Fuel, 2010,89(S1):S29-S35.
|
[5] |
WRIGHT M M, DAUGAARD D E, SATRIO J A, et al. Techno-economic analysis of biomass fast pyrolysis to transportation fuels[J]. Fuel, 2010,89(S1):S2-S10.
|
[6] |
BROWN, Tristan R, THILAKARATNE, et al. Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing[J]. Fuel, 2013,106:463-469.
|
[7] |
SWANSON R M, PLATON A, SATRIO J A, et al. Techno-economic analysis of biomass-to-liquids production based on gasification[J]. Fuel, 2010,89(11):S11-S19.
|
[8] |
WANG S R, DAI G X, YANG H P, et al. Lignocellulosic biomass pyrolysis mechanism:a state-of-the-art review[J]. Progress in Energy & Combustion Science, 2017,62:33-86.
|
[9] |
SHEN D, XIAO R, GU S, et al. ChemInform abstract:the pyrolytic behavior of cellulose in lignocellulosic biomass:a review[J]. RSC ADVANCES, 2011,1(9):1641.
|
[10] |
张旭东.生物质快速热解制取生物油试验研究[D].郑州:郑州大学,2014.
|
[11] |
陈清文.生物质再燃脱硝机理的研究[D].济南:山东建筑大学,2014.
|
[12] |
刘超.杨木木质素的热解特性及模型物的热解机理研究[D]. 广州:华南理工大学,2015.
|
[13] |
MA Q L, HAN L J, HUANG G Q. Evaluation of different water-washing treatments effects on wheat straw combustion properties[J]. Bioresource Technology, 2017,245(Pt.A):1075-1083.
|
[14] |
CHEN D Y, LI Y J, DENG M S, et al. Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood[J]. Bioresource Technology, 2016,214:615-622.
|
[15] |
XU L J, YAO Q, ZHANG Y, et al. Integrated production of aromatic amines and N-Doped carbon from lignin via ex Situ catalytic fast pyrolysis in the presence of ammonia over zeolites[J]. Acs Sustainable Chemistry & Engineering,2017,5(4):2960-2969.
|
[16] |
GENUINO H C, MUIZENBELT I, HEERES A, et al. An improved catalytic pyrolysis concept for renewable aromatics from biomass involving a recycling strategy for co-produced polycyclic aromatic hydrocarbons[J]. Green Chemistry, 2019,21(14).
|
[17] |
CARPENTER D, WESTOVER T, HOWE D, et al. Catalytic hydroprocessing of fast pyrolysis oils:impact of biomass feedstock on process efficiency[J]. Biomass & Bioenergy, 2017,96:142-151.
|
[18] |
李菲斐,郝菊芳,郭吉兆,等.5种氨基酸热失重行为及其热解生成氢氰酸的研究[J].烟草科技,2012(3):31-33.
|
[19] |
HANSSON K M, MAND L E, HABERMANN A, et al. Pyrolysis of poly-l-leucine under combustion-like conditions[J].
|
[20] |
CHEN H P, XIE Y P, CHEN W, et al. Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019,196:320-329.
|
[21] |
LI J, WANG Z Y, YANG X, et al. Evaluate the pyrolysis pathway of glycine and glycylglycine by TG-FTIR[J]. Journal of Analytical & Applied Pyrolysis, 2007,80(1):247-253.
|
[22] |
SUNG-SEEN C, JI-EUN K. Analysis of cyclic pyrolysis products formed from amino acid monomer[J]. Journal of Chromatography A, 2011,1218(46):8443-8455.
|
[23] |
KWON G J, KIM D Y, KIMURA S, et al. Rapid-cooling, continuous-feed pyrolyzer for biomass processing:preparation of levoglucosan from cellulose and starch[J]. Journal of Analytical & Applied Pyrolysis, 2007,80(1):1-5.
|
[24] |
METTLER M S, PAULSEN A D, VLACHOS D G, et al. The chain length effect in pyrolysis:bridging the gap between glucose and cellulose[J]. Green Chemistry, 2012,14(5):1284-1288.
|
[25] |
CHEN L M, LIAO Y F, GUO Z G, et al. Products distribution and generation pathway of cellulose pyrolysis[J]. Journal of Cleaner Production, 2019,232:1309-1320.
|
[26] |
METTLER M S, PAULSEN A D, VLACHOS D G, et al. The chain length effect in pyrolysis:bridging the gap between glucose and cellulose[J]. Green Chemistry, 2012,14(5):1284-1288.
|
[27] |
GAO Z X, LI N, YIN S Y, et al. Pyrolysis behavior of cellulose in a fixed bed reactor:residue evolution and effects of parameters on products distribution and bio-oil composition[J]. Energy, 2019,175:1067-1074.
|
[28] |
MAZEAU K, HEUX L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose[J]. Journal of Physical Chemistry B, 2008,107(10):2394-2403.
|
[29] |
KIM U J, EOM S H, WADA M. Thermal decomposition of native cellulose:influence on crystallite size[J]. Polymer Degradation & Stability, 2010,95(5):778-781.
|
[30] |
WANG Z, MCDONALD A G, WESTERHOF R J M, et al. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis[J]. Journal of Analytical & Applied Pyrolysis, 2013,100(3):56-66.
|
[31] |
RÄISÄNEN U, PITKÄNEN I, HALTTUNEN H, et al. Formation of the main degradation compounds from arabinose, xylose, mannose and arabinitol during pyrolysis[J]. Journal of Thermal Analysis & Calorimetry, 2003,72(2):481-488.
|
[32] |
ZHOU X M, LI W J, MABON R, et al. A Critical Review on Hemicellulose Pyrolysis[J]. Energy Technology, 2017,5.
|
[33] |
SHEN D K, JIN W, HU J, et al. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals:Structures, pathways and interactions[J]. Cheminform, 2015,51(6):761-774.
|
[34] |
MOLDOVEANU S C. Pyrolysis of organic molecules with applications to health and environmental issues[M]. 2010.
|
[35] |
WERNER K, POMMER L, BROSTRÖM M. Thermal decomposition of hemicelluloses[J]. Journal of Analytical & Applied Pyrolysis, 2014,110:130-137.
|
[36] |
WANG S R, RU B, LIN H Z, et al. Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles[J]. Bioresource Technology, 2013,143(17):378-383.
|
[37] |
GÍRIO F M, FONSECA C, CARVALHEIRO F, et al. Hemicelluloses for fuel ethanol:a review[J]. Bioresource Technology, 2010,101(13):4775-4800.
|
[38] |
WANG S R, LIN H Z, LI Z, et al. Structural characterization and pyrolysis behavior of cellulose and hemicellulose isolated from softwood Pinus armandii franch[J]. Energy & Fuels, 2016,30(7):5721-5728.
|
[39] |
PONDER G R, RICHARDS G N. Thermal synthesis and pyrolysis of a xylan[J]. Carbchydrate Research, 1991,218:143-155.
|
[40] |
WANG S R, RU B, LIN H Z, et al. Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods[J]. Fuel, 2015,150:243-251.
|
[41] |
BALL R, MCINTOSH A C, BRINDLEY J. Feedback processes in cellulose thermal decomposition:implications for fire-retarding strategies and treatments[J]. Combustion Theory & Modelling, 2004,8(2):281-291.
|
[42] |
YANG H P, YAN R, CHEN H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007,86(12/13):1781-1788.
|
[43] |
GODFREY, Neutelings. Lignin variability in plant cell walls:contribution of new models[J]. Plant Science, 2011,181(4):379-386.
|
[44] |
COLLARD F X, BLIN J. A review on pyrolysis of biomass constituents:mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[J]. Renewable & Sustainable Energy Reviews, 2014,38(5):594-608.
|
[45] |
KUMAR A, ANUSHREE, KUMAR J, et al. Utilization of lignin:a sustainable and eco-friendly approach[J]. Journal of the Energy Institute, 2019,93(1):235-271.
|
[46] |
TIPPAYAWONG N, KINORN J, THAVORNUN S. Yields and gaseous composition from slow pyrolysis of refuse-derived fuels[J]. Energy Sources, 2008,30(17):1572-1580.
|
[47] |
I. J M, G. R M, AHMED C A, et al. Biofuels production through Biomass Pyrolysis:a Technological Review[J]. Energies, 2012,5(12):4952-5001.
|
[48] |
MU W, BEN H X, RAGAUSKAS A, et al. Lignin Pyrolysis Components and Upgrading-Technology Review[J]. Bioenergy Research, 2013,6(4):1183-1204.
|
[49] |
SHARMA R K, WOOTEN J B, BALIGA V L, et al. Characterization of chars from pyrolysis of lignin[J]. 2004,83(11/12):1469-1482.
|
[50] |
WANG S R, RU B, LIN H Z, et al. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood[J]. Bioresource Technology, 2015,182:120-127.
|
[51] |
LIU C, HU J, ZHANG H Y, et al. Thermal conversion of lignin to phenols:relevance between chemical structure and pyrolysis behaviors[J]. Fuel, 2016,182:864-870.
|
[52] |
KAWAMOTO H, HORIGOSHI S, SAKA S. Effects of side-chain hydroxyl groups on pyrolytic β-ether cleavage of phenolic lignin model dimer[J]. Journal of Wood Science, 2007,53(3):268-271.
|
[53] |
KAWAMOTO H, SAKA S. Role of side-chain hydroxyl groups in pyrolytic reaction of phenolic β-Ether type of lignin dimer[J]. Journal of Wood Chemistry & Technology, 2007,27(2):113-120.
|
[54] |
田军,王镜岩.一本具有旺盛生命力的教材:介绍《生物化学》(第三版)[J].中国大学教学,2004(1):57-58.
|
[55] |
ASOMANING J, MUSSONE P, BRESSLER D C. Two-stage thermal conversion of inedible lipid feedstocks to renewable chemicals and fuels[J]. Bioresource Technology,2014,158:55-62.
|
[56] |
SHARREL R, N A A, MATHACHAN A E, et al. Sustainability and life cycle assessments of lignocellulosic and algal pretreatments[J]. Bioresource Technology, 2020,301:122678.
|
[57] |
SHARMA P, SAHARIA M, SRIVASTAVA R, et al. Tailoring microalgae for efficient biofuel production[J]. Frontiers in Marine Science, 2018,5.
|
[58] |
PENG W M, WU Q Y, TU P G. Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides[J]. Journal of Applied Phycology, 2000,12(2):147-152.
|
[59] |
CHEN H H, ZHOU D, LUO G, et al. Macroalgae for biofuels production:progress and perspectives[J]. Renewable & Sustainable Energy Reviews, 2015,47:427-437.
|
[60] |
YU J L, KRISTINA M, ARASH T. A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis[J]. Bioresource Technology, 2018,270:689-701.
|
[61] |
YANG C Y, LI R, ZHANG B, et al. Pyrolysis of microalgae:a critical review[J]. Fuel Processing Technology, 2019,186:53-72.
|
[62] |
WANG S, WANG Q, JIANG X M, et al. Compositional analysis of bio-oil derived from pyrolysis of seaweed[J]. Energy Conversion & Management, 2013,68(3):273-280.
|
[63] |
MA C T, GENG J G, ZHANG D, et al. Non-catalytic and catalytic pyrolysis of Ulva prolifera macroalgae for production of quality bio-oil[J]. Journal of the Energy Institute, 2019,93(1):303-311.
|
[64] |
YANIK J, STAHL R, TROEGER N, et al. Pyrolysis of algal biomass[J]. Journal of Analytical & Applied Pyrolysis, 2013,103(9):134-141.
|
[65] |
YOON JU B, CHANGKOOK R, JONG-KI J, et al. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae[J]. Bioresource Technology, 2011,102(3):3512-3520.
|
[66] |
陈莉,温康鑫,杜智,等.热解条件对秸秆热解特性及生物炭产率的影响[J].哈尔滨工业大学学报,2020,52(11):26-32.
|
[67] |
SUN J N, HE F H, PAN Y H, et al. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types[J]. Acta Agriculturae Scandinavica, 2016,67(1):12-22.
|
[68] |
UKAEW S, SCHOENBORN J, KLEMETSRUD B, et al. Effects of torrefaction temperature and acid pretreatment on the yield and quality of fast pyrolysis bio-oil from rice straw[J]. Journal of Analytical & Applied Pyrolysis,2018,129:112-122.
|
[69] |
JUNG S H, KANG B S, KIM J S. Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system[J]. Journal of Analytical & Applied Pyrolysis,2008,82(2):240-247.
|
[70] |
CHEN Z H, HU M, ZHU X L, et al. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis[J]. Bioresource Technology, 2015,192:441-450.
|
[71] |
TANGLEI S, ZAIFENG L, ZHIPING Z, et al. Fast corn stalk pyrolysis and the influence of catalysts on product distribution[J]. Bioresource Technology, 2020,301:122739.
|
[72] |
WANG Z, DAN D, LIN W G, et al. Catalytic pyrolysis of corn straw fermentation residue for producing alkyl phenols[J]. Renewable Energy, 2017,109:287-294.
|
[73] |
CAI J M, XU D, DONG Z J, et al. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis:case study of corn stalk[J]. Technology & Development of Chemical Industry, 2006,82(3):2705-2715.
|
[74] |
QU W, LIN W, JULSON J. An exploration of improving the properties of heavy bio-oil[J]. Energy & Fuels, 2013,27(8):4717-4722.
|
[75] |
BERTERO,GOROSTEGUI,HORACIO A,et al.Characterization of the liquid products in the pyrolysis of residual chañar and palm fruit biomasses[J]. Fuel,2014,116(4):409-414.
|
[76] |
SALEHI E, ABEDI J, HARDING T. Bio-oil from sawdust:pyrolysis of sawdust in a fixed-bed system[J]. Energy & Fuels, 2009,23(7):3767-3772.
|
[77] |
PARIHAR M F, KAMIL M, GOYAL H B, et al. An experimental study on pyrolysis of biomass[J]. Process Safety & Environmental Protection, 2007,85(5):458-465.
|
[78] |
PVTVN F A E P. Fast pyrolysis of sesame stalk:yields and structural analysis of bio-oil[J]. Journal of Analytical & Applied Pyrolysis, 2004,71(2):779-790.
|
[79] |
WANG X, SHENG L L, YANG X Y. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp[J]. Bioresource Technology,2017,229:119-125.
|
[80] |
JI X, LIU B, CHEN G T, et al. The pyrolysis of lipid-extracted residue of Tribonema minus in a fixed-bed reactor[J]. Journal of Analytical & Applied Pyrolysis,2015,116:231-236.
|
[81] |
ALVAREZ J, LOPEZ G, AMUTIO M, et al. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor[J]. Fuel,2014,128:162-169.
|
[82] |
DAVID E, KOPAC J. Pyrolysis of rapeseed oil cake in a fixed bed reactor to produce bio-oil[J]. Journal of Analytical and Applied Pyrolysis, 2018,134:495-502.
|
[83] |
DAVID E, KOPAC J. Upgrading the characteristics of the bio-oil obtained from rapeseed oil cake pyrolysis through the catalytic treatment of its vapors[J]. Journal of Analytical & Applied Pyrolysis, 2019,141:104638.
|
[84] |
ZHAO B, O'CONNOR D, ZHANG J L, et al. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar[J]. Journal of Cleaner Production, 2018,174:977-987.
|
[85] |
KARAOSMANOGLU F, ISIGIGUR-ERGUDENLER A, SEVER A. Biochar from the straw-stalk of rapeseed plant[J]. Energy & Fuels, 2012,14(2):336-339.
|
[86] |
AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water:a review[J]. Chemosphere, 2014,99(3):19-33.
|
[87] |
HUBER G W, SARA I, AVELINO C. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006,106(9):4044-4098.
|
[88] |
MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of wood/biomass for bio-oil:a critical review[J]. Energy & Fuels, 2006,20(3):848-889.
|
[89] |
DOMÍNGUEZ A, MENÉNDEZ J A, FERNÁNDEZ Y, et al. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas[J]. Journal of Analytical and Applied Pyrolysis, 2006,79(1/2):128-135.
|
[90] |
DU Z Y, MOHR M, MA X C, et al. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content[J]. Bioresource Technology, 2012,120:13-18.
|
[91] |
VISPUTE T P, ZHANG H, SANNA A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils[J]. Science, 2010,330(6008):1222-1227.
|
[92] |
ZHENG A Q, ZHAO K, ZHAO Z L, et al. Fast Pyrolysis of nitrogen-rich wood waste pretreated by microwave-assisted glycerolysis[J]. Waste & Biomass Valorization, 2017,8:349-358.
|
[93] |
ELLIOTT D C, BECKMAN D, BRIDGWATER A V, et al. Developments in direct thermochemical liquefaction of biomass:1983-1990[J]. Energy & Fuels, 1991,5(3):399-410.
|
[94] |
BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass & Bioenergy, 2012,38(2):68-94.
|
[95] |
YANG Y, OCHOA-HERNÁNDEZ C, PIZARRO P, et al. Ce-promoted Ni/SBA-15 catalysts for anisole hydrotreating under mild conditions[J]. Applied Catalysis B Environmental, 2016,197:206-213.
|
[96] |
ZHANG X H, WANG T J, MA L L, et al. Production of cyclohexane from lignin degradation compounds over Ni/ZrO2-SiO2 catalysts[J]. Applied Energy, 2013,112(4):533-538.
|
[97] |
ZHANG X H, CHEN L G, KONG W, et al. Upgrading of bio-oil to boiler fuel by catalytic hydrotreatment and esterification in an efficient process[J]. Energy, 2015,84:83-90.
|
[98] |
ROCHA J D, LUENGO C A, SNAPE C E. Hydrodeoxygenation of oils from cellulose in single and two-stage hydropyrolysis[J]. Renewable Energy, 1996,9(1/2/3/4):950-953.
|
[99] |
AYSU T, OLA O, MAROTO-VALER M M, et al. Effects of titania based catalysts on in-situ pyrolysis of Pavlova microalgae[J]. Fuel processing Technology, 2017,166:291-298.
|
[100] |
HAN G, LEE M W, PARK S, et al. Revealing the factors determining the selectivity of guaiacol HDO reaction pathways using ZrP-supported Co and Ni catalysts[J]. Journal of Catalysis, 2019,377:343-357.
|
[101] |
YORGUN S, ŞIMŞEK Y E. Catalytic pyrolysis of Miscanthus×giganteus over activated alumina[J]. Bioresource Technology, 2008,99(17):8095-8100.
|
[102] |
AYSU T, RAHMAN N A A, SANNA A. Catalytic pyrolysis of Tetraselmis and Isochrysis microalgae by nickel ceria based catalysts for hydrocarbon production[J]. Energy, 2016,103:205-214.
|
[103] |
OSMUNDSEN C M, YANG X, VOSS B, et al. Zeolite-catalyzed biomass conversion to fuels and chemicals[J]. Energy & environmental science:EES, 2011,4(3):793-804.
|
[104] |
PAN P, HU C W, YANG W Y, et al. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils[J]. Bioresource Technology, 2010,101(12):4593-4599.
|
[105] |
ZHOU G F, JENSEN P A, LE D M, et al. Direct upgrading of fast pyrolysis lignin vapor over the HZSM-5 catalyst[J]. Green Chemistry, 2016,18(7):1965-1975.
|
[106] |
DAVID E, KOPAČ J. Upgrading the characteristics of the bio-oil obtained from rapeseed oil cake pyrolysis through the catalytic treatment of its vapors[J]. Journal of Analytical and Applied Pyrolysis, 2019,141:104638.
|
[107] |
CAMPANELLA A, HAROLD M P. Fast pyrolysis of microalgae in a falling solids reactor:effects of process variables and zeolite catalysts[J]. Biomass & Bioenergy, 2012,46(1):218-232.
|
[108] |
ZHENG Y W, WANG F, YANG X Q, et al. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J]. Journal of Analytical & Applied Pyrolysis,2017,126:169-179.
|
[109] |
时艳.微藻快速催化裂解制取生物油[D].青岛:青岛科技大学,2013.
|
[110] |
GAO L J, SUN J H, XU W, et al. Catalytic pyrolysis of natural algae over Mg-Al layered double oxides/ZSM-5(MgAl-LDO/ZSM-5) for producing bio-oil with low nitrogen content[J]. Bioresource Technology, 2017,225:293-298.
|