Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
GAO Shuai-qiang, SHAO Hui-huang, BAI Chun-yin, HU Xing-bao, YU Guang-wei, CHONG Yun-xiao, LI Feng-min, HU Hong-ying. THE CAUSE OF FILAMENTOUS ALGAE OUTBREAK IN THE WATER BODIES SUPPLIED BY RECLAIMED WATER: A CASE STUDY ON A SOUTH CHINA RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 7-12,91. doi: 10.13205/j.hjgc.202104002
Citation: GAO Shuai-qiang, SHAO Hui-huang, BAI Chun-yin, HU Xing-bao, YU Guang-wei, CHONG Yun-xiao, LI Feng-min, HU Hong-ying. THE CAUSE OF FILAMENTOUS ALGAE OUTBREAK IN THE WATER BODIES SUPPLIED BY RECLAIMED WATER: A CASE STUDY ON A SOUTH CHINA RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 7-12,91. doi: 10.13205/j.hjgc.202104002

THE CAUSE OF FILAMENTOUS ALGAE OUTBREAK IN THE WATER BODIES SUPPLIED BY RECLAIMED WATER: A CASE STUDY ON A SOUTH CHINA RIVER

doi: 10.13205/j.hjgc.202104002
  • Received Date: 2020-04-29
    Available Online: 2021-07-21
  • Using reclaimed water as the supplementary water for rivers and lakes has become an important measure for urban water environment management. But the inflow of reclaimed water also brings the risk of algal bloom outbreak into the water bodies. In order to explain the phenomenon of filamentous algae's algal blooms easily appearing in the recharged water body of reclaimed water, the growth mode and outbreak causes of filamentous algae in a river recharged with reclaimed water in South China was investigated through field investigation and laboratory experiments. It was found that the growth of filamentous algae had four stages:dormancy, germination, expansion and eruption. In the first three stages, they attached to the bottom of the river and continuously spawned filaments into the water. When the filaments accumulated to a certain amount, they broke free from the bottom and then floated up, and then algal bloom happend. Hydrodictyon(spp) was the dominant species in algal bloom in the rivers. Its growth rate and maximum density were much higher than that of the associated specie, Tolypothrix(spp). So it could be called as algal bloom algae. The optimum growth temperature was about 25℃ for Hydrodictyon(spp), but it still could grow at a low temperature of 15℃ though the growth rate was lower. Therefore, filamentous algal bloom in the river might result from their growth at low temperature, the attachment on the bottom and sufficient light reaching the bottom. The following measures were recommended for the algal bloom control:laying gravel layer on the bottom, tending cold resistant submerged vegetation and aquatic animals fed on filamentous algae, as well as monitoring accumulation of filaments and warning at early stage.
  • [1]
    胡洪营, 孙迎雪, 陈卓, 等. 城市水环境治理面临的课题与长效治理模式[J].环境工程,2019,21(10):6-15.
    [2]
    何腾. 再生水补充景观水体的水质变化研究[D].西安:西安建筑科技大学,2016.
    [3]
    赵乐军,王秀朵,刘春光,等.再生水回用于景观水体的富营养化趋势研究[J].给水排水,2008,34(12):13-16.
    [4]
    孟庆义,吴晓辉,赵立新,等.再生水回用于北京景观水体引起的水质变化及其改善措施[J].水资源保护,2011,27(1):51-54.
    [5]
    RULEY J E, RUSCH K A. Development of a simplified phosphorus management model for a shallow, subtropical, urban hypereutrophic lake[J]. Ecological Engineering,2004,22(2):77-98.
    [6]
    黄伟伟,郑兴灿,廖飞凤,等.再生水景观水体富营养化因素的垂直变化特征[J].中国给水排水,2008(1):65-68,72.
    [7]
    王云中,杨成建,陈兴都.西安市景观水体营养状态调查及浮游藻类多样性研究[J].环境监测管理与技术,2010,22(3):22-26.
    [8]
    HEISLER J, GLIBERT P M, BURKHOLDER J M, et al. Eutrophication and harmful algal blooms:a scientific consensus[J]. Harmful Algae,2008,8(1):3-13.
    [9]
    SCOTT N H, CHRISTOPHER M P, TODD HOWELL E, et al. Urban influences on Cladophora blooms in Lake Ontario[J]. Journal of Great Lakes Research,2012,38:116-123.
    [10]
    仓基俊,左倬,郭萧,等.青苔在微污染水体生态净化系统中的发生与防治[J].安徽农业科学,2012,40(9):5524-5526.
    [11]
    VERTHOUQSTRAETE M P, BYAPPANAHALLI M N, ROSE J B, et al. Cladophora in the Great Lakes:impacts on beach water quality and human health[J]. Water Science and Technology, 2010, 62(1):68-76.
    [12]
    裴国凤. 淡水湖泊底栖藻类的生态学研究[D].武汉:中国科学院研究生院(水生生物研究所),2006:4-13.
    [13]
    凡传明. 大型丝状藻类修复水体富营养化的潜能研究[D].长沙:湖南大学,2011.
    [14]
    李敦海,史龙新,李根保,等.丝状绿藻腐烂过程对水质和沉水植物黑藻生长的影响实验研究[J].环境科学与管理,2006,31(6):27-30.
    [15]
    ZHANG W, ZHAO Y G, CUI B J, et al. Evaluation of filamentous green algae as feedstocks for biofuel production[J]. Bioresource Technology,2016,220:407-413.
    [16]
    CHUN C L, PELLER J R, SHIVELY D, et al. Virulence and biodegradation potential of dynamic microbiaial communities associated with decaying Cladophora in Great Lakes[J].Science of the Total Environment, 2017,574:872-880.
    [17]
    MARGARITA M, ANABEL S. Seasonal variations in P-I responses of Chara hispida L. and Potamogeton pectinatus L. from stream mediterranean ponds[J]. Aquatic Botany,1998,61(1):1-15.
    [18]
    王超. 浒苔(Ulva prolifera)绿潮危害效应与机制的基础研究[D].青岛:中国科学院研究生院(海洋研究所),2010:7-8.
    [19]
    陆开宏. 蓝藻水华与2种藻食性水生动物的相互作用[D].青岛:中国海洋大学,2009:1-5.
    [20]
    倪雪琳,吴光学,管运涛,等.景观用再生水氮磷条件下两种典型水华藻类的生长及竞争规律[J].环境工程,2013,31(增刊1):240-244.
    [21]
    李亚军,支崇远,詹娜娜.喀斯特淡水舟形藻分离和培养研究[J].安徽农业科学,2011,39(20):11996,12074.
    [22]
    周银环,刘东超.微藻的分离技术及其应用[J].河北渔业,2007(5):43-45.
    [23]
    谢文玲,康燕玉,高亚辉.硅藻休眠孢子生活史的研究进展[J].海洋科学,2006(9):75-78.
    [24]
    陈蕾,卞瑶,周旭,等.带形蜈蚣藻盘丝体孢子的形成及温度和光照强度对其放散的影响[J].水生生物学报,2019,43(1):219-225.
    [25]
    冯青英,陈盛,程麒,等.应用热乙醇法提取浮游植物中叶绿素a的探讨[J].安徽农业科学,2012,40(29):14398-14399

    ,14413.
    [26]
    杨玉珍,夏未铭,杨瑾,等.水体中叶绿素a测定方法的研究[J].中国环境监测,2011,27(5):24-27.
    [27]
    余爱华. Logistic模型的研究[D].南京:南京林业大学,2003:5-10.
    [28]
    付永虎. 典型海域沉积物中浮游植物休眠体及其萌发研究[D].广州:暨南大学,2009.
    [29]
    刘艳斌,韩微,贤振华.温度对福寿螺生长发育及摄食的影响[J].南方农业学报,2011,42(8):901-905.
    [30]
    王润萍,戴铃灵,陈雅飞,等.短期温度、盐度胁迫对海洋青鳉鱼(Oryziasmelastigma)摄食行为及抗氧化的影响[J].海洋与湖沼,2019,50(2):378-387.
    [31]
    刘鉴毅,宋志明,王妤,等.温度对点篮子鱼幼鱼生长、摄食和消化酶活性的影响[J].海洋渔业,2015,37(5):442-448.
  • Relative Articles

    [1]TONG Jingzhe, NI Changjian, MI Jiayuan, JIANG Mengjiao, ZHANG Ying, SHI Qiaoyu. A BP NEURAL NETWORK MODEL OF AEROSOL SCATTERING HYGROSCOPIC GROWTH FACTOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 131-137,165. doi: 10.13205/j.hjgc.202307018
    [2]WEI Qing, CHEN Yongqi, XIE Yifan, LIN Jingying, YIN Hailong. POLLUTION MECHANISM OF WET-WEATHER PUMPING DISCHARGE IN SEPARATED STORMWATER DRAINAGE SYSTEMS BASED ON ARTIFICIAL NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 54-60,181. doi: 10.13205/j.hjgc.202312006
    [3]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [4]PAN Siyu, ZHANG Meiling. PREDICTION OF CARBON DIOXIDE EMISSION IN GANSU PROVINCE BASED ON BP NEURAL NETWORK AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 61-68,85. doi: 10.13205/j.hjgc.202307009
    [5]YU Feng, WANG Kejia, ZHANG Wenlong, LI Yi. PREDICTION OF COAGULANT DOSAGE FOR IN-SITU TURBIDITY CONTROL IN WATER ECOLOGICAL RESTORATION BASED ON BP NEURAL NETWORK OPTIMIZED BY GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 154-163. doi: 10.13205/j.hjgc.202304022
    [6]XIE Wei, XU Jiao, LIN Zhiguo, YAN Di, ZHANG Yinglei. RESEARCH ON REAL-TIME SOURCE APPORTIONMENT METHOD OF VOCs BASED ON BP NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 231-238. doi: 10.13205/j.hjgc.202212031
    [7]GUO Zirui, CHEN Zhiqiang, CHI Riguang, SHEN Aihua. PREDICTION OF POLYHYDROXYALKANOATE (PHA) PRODUCTION UTILIZING FOOD WASTE BASED ON GA-BP NEURAL NETWORK METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 166-173. doi: 10.13205/j.hjgc.202204024
    [8]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
    [9]LIANG Tao, XIE Gao-feng, MI Da-bin, JIANG Wen. PREDICTION OF PM10 CONCENTRATION BASED ON CEEMDAN-SE AND LSTM NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 107-113. doi: 10.13205/j.hjgc.202002015
    [13]Ren Jinxia Yu Zhiwu You Xin, . MODEL FOR WATER QUALITY EVALUATION BASED ON WAVELET NEURAL NETWORK OF ADAPTIVE GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 144-148. doi: 10.13205/j.hjgc.201505031
  • Cited by

    Periodical cited type(6)

    1. 张亮,杨博文,刘宇衡,张雨,高瑜,李佳诚,李俊辰,林斯杰. 基于机器视觉的生化池监测技术. 环境工程. 2025(03): 1-10 . 本站查看
    2. 刘志,高东明. 不同深度学习模型在餐厨垃圾类型识别中的应用与比较. 环境工程. 2024(03): 254-260 . 本站查看
    3. 冯丁,刘晶静,马文丹,刘玉学,杨尘,张萌萌. 基于机器学习的生物炭吸附重金属建模研究进展. 工业水处理. 2024(12): 1-11 .
    4. 王文胜,年诚旭,张超,阎如鹏,吴鑫全,张歆博. 基于YOLO v5模型的非住宅区自动垃圾分类箱设计. 环境工程. 2022(03): 159-165 . 本站查看
    5. 李长江,余海涛,李官星,李玥洋,谭雯文. 基于SqueezeNet-Tiny的可回收垃圾智能垃圾桶设计及实现. 现代信息科技. 2022(17): 75-77 .
    6. 亢红波,蔡学瑞,杨亮,周倩倩. 一种智能垃圾分类装置设计. 西安邮电大学学报. 2022(05): 60-66 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.4 %FULLTEXT: 9.4 %META: 86.9 %META: 86.9 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.1 %其他: 17.1 %其他: 1.1 %其他: 1.1 %China: 0.6 %China: 0.6 %Howard: 0.2 %Howard: 0.2 %上海: 8.1 %上海: 8.1 %东莞: 4.3 %东莞: 4.3 %临汾: 0.2 %临汾: 0.2 %乌鲁木齐: 0.6 %乌鲁木齐: 0.6 %亚特兰大: 0.2 %亚特兰大: 0.2 %伦敦: 0.2 %伦敦: 0.2 %佛山: 1.3 %佛山: 1.3 %保定: 1.9 %保定: 1.9 %北京: 3.4 %北京: 3.4 %十堰: 0.2 %十堰: 0.2 %南京: 1.1 %南京: 1.1 %台州: 1.5 %台州: 1.5 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.2 %呼和浩特: 0.2 %和田: 0.2 %和田: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %嘉兴: 0.6 %嘉兴: 0.6 %大同: 0.2 %大同: 0.2 %大连: 1.7 %大连: 1.7 %天津: 2.1 %天津: 2.1 %太原: 0.2 %太原: 0.2 %安大略: 0.2 %安大略: 0.2 %宜春: 0.2 %宜春: 0.2 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.4 %密蘇里城: 0.4 %常德: 0.6 %常德: 0.6 %广州: 2.4 %广州: 2.4 %张家口: 0.2 %张家口: 0.2 %意法半: 0.2 %意法半: 0.2 %成都: 0.6 %成都: 0.6 %扬州: 0.9 %扬州: 0.9 %无锡: 0.2 %无锡: 0.2 %昆明: 1.1 %昆明: 1.1 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 3.2 %杭州: 3.2 %杰克逊维尔: 0.2 %杰克逊维尔: 0.2 %桂林: 0.2 %桂林: 0.2 %武汉: 1.1 %武汉: 1.1 %汕头: 0.2 %汕头: 0.2 %沈阳: 0.4 %沈阳: 0.4 %泰安: 0.2 %泰安: 0.2 %洛杉矶: 0.2 %洛杉矶: 0.2 %济南: 0.6 %济南: 0.6 %深圳: 0.2 %深圳: 0.2 %温州: 0.4 %温州: 0.4 %湖州: 0.9 %湖州: 0.9 %漯河: 2.6 %漯河: 2.6 %濮阳: 0.2 %濮阳: 0.2 %焦作: 0.4 %焦作: 0.4 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %绥化: 0.4 %绥化: 0.4 %芒廷维尤: 5.8 %芒廷维尤: 5.8 %芝加哥: 1.1 %芝加哥: 1.1 %衡水: 2.1 %衡水: 2.1 %衡阳: 0.2 %衡阳: 0.2 %西宁: 14.3 %西宁: 14.3 %西安: 0.2 %西安: 0.2 %贵阳: 0.6 %贵阳: 0.6 %运城: 1.7 %运城: 1.7 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.9 %郑州: 0.9 %鄂州: 0.6 %鄂州: 0.6 %重庆: 1.1 %重庆: 1.1 %金华: 0.2 %金华: 0.2 %长沙: 1.9 %长沙: 1.9 %青岛: 0.4 %青岛: 0.4 %其他其他ChinaHoward上海东莞临汾乌鲁木齐亚特兰大伦敦佛山保定北京十堰南京台州合肥呼和浩特和田哈尔滨嘉兴大同大连天津太原安大略宜春宣城密蘇里城常德广州张家口意法半成都扬州无锡昆明晋城朝阳杭州杰克逊维尔桂林武汉汕头沈阳泰安洛杉矶济南深圳温州湖州漯河濮阳焦作石家庄福州绥化芒廷维尤芝加哥衡水衡阳西宁西安贵阳运城遵义邯郸郑州鄂州重庆金华长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (641) PDF downloads(52) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return