Core Chinese Journal
Source Journal of CSCD(Core Version)
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 39 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
FU Yu, LONG Yun, XIAO Bo, CHENG Huai-yu, LONG Xin-ping. NUMERICAL SIMULATION AND ANALYSIS OF FLOW FIELD AND PARTICLE MOTION IN GRID FLOCCULATION TANK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 25-29,85. doi: 10.13205/j.hjgc.202104005
Citation: FU Yu, LONG Yun, XIAO Bo, CHENG Huai-yu, LONG Xin-ping. NUMERICAL SIMULATION AND ANALYSIS OF FLOW FIELD AND PARTICLE MOTION IN GRID FLOCCULATION TANK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 25-29,85. doi: 10.13205/j.hjgc.202104005

NUMERICAL SIMULATION AND ANALYSIS OF FLOW FIELD AND PARTICLE MOTION IN GRID FLOCCULATION TANK

doi: 10.13205/j.hjgc.202104005
  • Received Date: 2020-05-28
    Available Online: 2021-07-21
  • Numerical simulation method was used to analyze the characteristics of the internal flow in the front section of the grid flocculation tank. With the vortex velocity gradient and turbulent kinetic energy as the evaluation index of flocculation, the paper verified the rationality of the structural design. In addition, 11 groups of particles with different sizes and effective densities were added to the flow field. Each group randomly released 98560 particles at the entrance of the flow field and their motion was tracked by the DPM model. It was noted that as the particle size increased, the effective density decreased accordingly. The research found that when the particle diameter changed from 1 μm to 1000 μm, the deposition rate was kept less than 10% and the deposition was uniform in each shaft, which could meet the flocculation requirements. When the particle diameter was 1000~5000 μm, the deposition rate increased sharply, but the deposition was uniformed in each shaft. However, when the particle diameter increased to 10000 μm, a large number of particles were deposited in the first shaft, which was not conducive to the uniformity of sludge discharge. So taking deposition rate and the uniformity of sludge discharge into consideration, such large size particles of more than 1000 μm should be avoided in actual engineering practice.
  • loading
  • [1]
    王光. 絮凝、沉降技术在循环水处理过程中的运行总结[J]. 聚氯乙烯, 2017, 45(11):44-47.
    [2]
    朱昭福. 微絮凝直接过滤工艺在自来水厂扩建工程中的应用[J]. 工程建设与设计, 2020, 11(6):237-241.
    [3]
    FAN W B, LI W G, GONG X J, et al. Evaluation of the effect of a hydraulic impeller in a flocculation basin on hydrodynamic behavior using computational fluid dynamics[J]. Desalination and Water Treatment, 2014, 54(4/5):1361-1374.
    [4]
    宋峻林, 唐荣联, 王洪. 絮凝过程CFD数值模拟研究[J]. 现代化工, 2018, 38(8):231-235.
    [5]
    易中慎. 基于CFD的网格絮凝池参数优化设计研究[J]. 内蒙古科技与经济, 2016, 7(353):117-119.
    [6]
    陈玉, 王军, 张培璇. 穿孔旋流絮凝池加网格板的数值模拟[J]. 中国给水排水, 2019, 35(1):48-51.
    [7]
    胡远来, 陆先镭,贺卫宁,等. 排泥管对网格絮凝池流态的影响[J]. 中国给水排水, 2017, 33(23):51-54.
    [8]
    季小磊. 基于FLUENT对微涡絮凝澄清池的数值模拟及试验研究[D]. 兰州:兰州交通大学, 2019.
    [9]
    刘存, 王庆涛, 陈翔宇,等. 网格絮凝池结构参数对流场影响的数值模拟[J].水资源与水工程学报, 2018, 29(4):162-167.
    [10]
    姚萌, 冉治霖, 相会强,等. 搅拌桨叶类型对絮凝池内流场特性的仿真模拟[J]. 环境工程, 2019, 37(增刊1):66-71.
    [11]
    KHELIFA A, HILL P S. Models for effective density and settling velocity of flocs[J]. Journal of Hydraulic Research, 2010, 44(3):390-401.
    [12]
    DIERCKS A R, ASPER V L. In situ settling speeds of marine snow aggregates below the mixed layer:Black Sea and Gulf of Mexico[J]. Deep Sea Research Part I Oceanographic Research Papers, 1997, 44(3):390-398.
    [13]
    FOX J M, HILL P S, MILLIGAN T G, et al. Floc fraction in the waters of the Po River prodelta[J]. Continental Shelf Research, 2003, 24(15):15-17.
    [14]
    KUPRENAS R, DUC T, KYLE S. A shear-limited flocculation model for dynamically predicting average floc size[J]. Journal of Geophysical Research Oceans, 2018, 12(3):102-154.
    [15]
    LI Z L, LU P L, ZHANG D J, et al. Simulation of Floc size distribution in flocculation of activated sludge using population balance model with modified expressions for the aggregation and breakage[J]. Mathematical Problems in Engineering, 2019(6):1-10.
    [16]
    NASSER M S. Characterization of floc size and effective floc density of industrial papermaking suspensions[J]. Separation & Purification Technology, 2014, 12(2):495-505.
    [17]
    李振亮, 张代钧, 卢培利, 等. 活性污泥絮体粒径分布与分形维数的影响因素[J]. 环境科学, 2013, 34(10):3975-3980.
    [18]
    黄忠钊, 谭立新. 基于群体平衡模型的污泥絮凝-沉降三维模拟[J]. 西安理工大学学报, 2013, 29(4):469-474.
    [19]
    仲崇军. 基于CFD的水处理网格絮凝池优化设计研究[D]. 武汉:华中科技大学, 2009.
    [20]
    XIANG P, WAN Y H, WANG X, et al. Numerical simulation and experimental study of electrocoagulation grid flocculation tank[J]. Water Science & Technology, 2018, 78(4):786-794.
    [21]
    MARCHISIO D L, VIGIL R D, FOX R O. Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems[J]. Chemical Engineering Science, 2003, 58(15):3337-3351.
    [22]
    SAMARAS K, ZOUBOULIS A, KARAPANTSIOS T, et al. A CFD-based simulation study of a large scale flocculation tank for potable water treatment[J]. Chemical Engineering Journal, 2010, 162(1):208-216.
    [23]
    邹秋兰. 栅条絮凝池栅条间距对絮凝水力条件的影响研究[J]. 工程与建设, 2016, 30(3):333-335.
    [24]
    MCCAVE I N. Size spectra and aggregation of suspended particles in the deep ocean[J]. Deep Sea Research, 1984, 31(4):329-352.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (336) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return