Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHOU Guo-hua, ZHANG Bei, WANG Gang, LI Meng-meng, CHEN Liang. ANALYSIS OF ODOR SOURCES IN STORMWATER PUMP POOL AND STORMWATER PIPE OF A STORMWATER PUMP STATION IN THE SINO-SINGAPORE TIANJIN ECO-CITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 30-35,127. doi: 10.13205/j.hjgc.202104006
Citation: ZHOU Guo-hua, ZHANG Bei, WANG Gang, LI Meng-meng, CHEN Liang. ANALYSIS OF ODOR SOURCES IN STORMWATER PUMP POOL AND STORMWATER PIPE OF A STORMWATER PUMP STATION IN THE SINO-SINGAPORE TIANJIN ECO-CITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 30-35,127. doi: 10.13205/j.hjgc.202104006

ANALYSIS OF ODOR SOURCES IN STORMWATER PUMP POOL AND STORMWATER PIPE OF A STORMWATER PUMP STATION IN THE SINO-SINGAPORE TIANJIN ECO-CITY

doi: 10.13205/j.hjgc.202104006
  • Received Date: 2020-03-14
    Available Online: 2021-07-21
  • The malodorous of the external drainage water from stormwater pumping station has a significant impact on the quality of surface water. In this paper, the Qingtuozi stormwater pumping station in the Sino-Singapore Tianjin Eco-city was selected, and the water sample from stormwater pump pool, the water and sludge samples from stormwater pipe, and the water sample of groundwater were collected to analysis the sources of black and odor from its external drainage water. Results indicated that the main pollution indicators or pollutants in the pump pool, rainwater pipe and groundwater were conductivity, total dissolved solids, total hardness, total alkalinity, chemical oxygen demand, chloride, sulfate, bicarbonate sodium, potassium, calcium and magnesium. The water quality of the stormwater pipe was slightly better than that of the pump pool and groundwater. The main pollutants detected in the sediment of the stormwater pipe were ammonia nitrogen and sulfur. The generation of methane, ammonia, and hydrogen sulfide under the low-oxygen environment in pump pool and stormwater pipe during carbon, nitrogen, and sulfur reduction was the major sources of odor from the external drainage water. Sulfur compounds in water samples of the pump pool and stormwater pipe could change into iron sulfide and manganese sulfide under the disturbance conditions, which was the major sources for the blackening of external drainage water. Sino-Singapore Tianjin Eco-city Qingtuozi Rainwater Pumping Station and stormwater pipe network odor disposal was expected to adopt aeration as the key process, combined with anti-seepage, dredging and other technologies. In addition, initial stormwater and rainfall runoff pollution is the main source of pollutants in the stormwater pumping station and stormwater pipe in Tianjin.
  • [1]
    CAO J X, SUN Q, ZHAO D H, et al. A critical review of the appearance of black-odorous waterbodies in China and treatment methods[J]. Journal of Hazardous Materials, 2020, 385:121511.
    [2]
    苏晓燕,许燕娟,沈斐,等. 无锡市水源地致嗅物质调查及原因分析[J]. 环境监控与预警,2011,3(2):37-41.
    [3]
    PLATIKANOV S, BAQUERO D, GONZÁLEZ S, et al. Chemometric analysis for river water quality assessment at the intake of drinking water treatment plants[J]. Science of the Total Environment, 2019, 667:552-562.
    [4]
    杨丽丽,张鸿斌,张运山. 中新天津生态城青坨子泵站中CFD模拟的应用[J]. 中国市政工程,2012(增刊1):80-82.
    [5]
    屈健. 降低畜牧生产对环境污染的风险[J]. 浙江畜牧兽医,2019(3):10-13.
    [6]
    BUCHSHTAV T, AMRANI A, SAID-AHMAD W, et al. Kinetics and mechanism of the abiotic decomposition of dimethyl polysulfides with three, four and five sulfur atoms under dark, oxic conditions[J]. Environmental Chemistry, 2019,16(7):495-504.
    [7]
    邓权. 生活垃圾填埋场渗滤液除臭工艺概述[J]. 化工设计通讯,2018,44(1):86.
    [8]
    杨传忠,荣中原,廖庆花,等. 污水处理厂臭气处理方法分析[J]. 再生资源与循环经济,2019(7):38-40.
    [9]
    韩博,吴建会,王凤炜,等. 天津滨海新区工业源VOCs及恶臭物质排放特征[J]. 中国环境科学,2011,31(11):1776-1781.
    [10]
    CONTI C, GUARINO M, BACENETTI J. Measurements techniques and models to assess odor annoyance:a review[J]. Environment International, 2020, 134:105261.
    [11]
    王晓辰,杨申昊,邓维,等. 恶臭气体中含硫组分的气相色谱快速检测系统研究[J]. 分析试验室,2018,37(8):111-115.
    [12]
    MIDDLETO F M, ROSEN A A. Organic contaminants affecting the quality of water[J]. Public Health Reports, 1956, 71(11):1125.
    [13]
    全浩,韩玉璞. 关于恶臭监测方法和恶臭环境标准中若干问题的探讨[J]. 中国环境监测,1988,4(4):34-36.
    [14]
    国家环境保护局GB 3095-2012环境空气质量标准[S]. 北京:中国环境科学出版社,2012.
    [15]
    国家环境保护局GB 14554-93恶臭污染物排放标准[S]. 北京:中国标准出版社,1993.
    [16]
    葛超超,施玲丽,叶丹奇,等. 城镇污水处理厂恶臭污染源强及监测[J]. 化工设计通讯,2018(9):176.
    [17]
    齐磊. 污水处理厂常用除臭方法比较分析[J]. 锋绘,2018(9):83-83.
    [18]
    解静静. 污水厂除臭方法概述[J]. 四川水泥,2016(11):94.
    [19]
    白建国. 市政排水管道除臭方法研究[J]. 中国给水排水,2015,31(23):87-89.
    [20]
    眭光华. 城市污水处理厂及泵站除臭技术研究[D]. 广州:广东工业大学,2008.
    [21]
    张闻涛,刘欣艳,张超. 生活垃圾处理设施恶臭污染源与控制技术研究进展[C]//第六届全国恶臭污染测试与控制技术研讨会论文集, 上海,2016.
    [22]
    KIM K H, JO S H, SONG H C, et al. Diagnostic analysis of offensive odorants in a large municipal waste treatment plant in an urban area[J]. International Journal of Environmental Science and Technology, 2013, 10(2):261-274.
    [23]
    张颖,靳少培,姬亚芹,等. 污水除臭技术的应用及研究现状[J]. 环境污染与防治,2013,35(1):95-99

    ,113.
    [24]
    中华人民共和国地质矿产部. 地下水质检验方法:乙二胺四乙酸二钠滴定法测定硬度:DZ/T 0064.15-1993[S]. 北京,1993.

    (标准内未说明出版者).
    [25]
    中华人民共和国地质矿产部. 地下水质检验方法:溶解性固体总量的测定:DZ/T 0064.9-1993[S]. 北京,1993.
    [26]
    环境保护部. 水质氨氮的测定水杨酸分光光度法:HJ 536-2009[S]. 北京:中国环境科学出版社,2009.
    [27]
    环境保护部. 水质总氮的测定碱性过硫酸钾消解紫外分光光度法:HJ 636-2012[S]. 北京:中国环境科学出版社,2012.
    [28]
    环境保护部. 水质总磷的测定钼酸铵分光光度法:GB 11893-89[S]. 北京,1989.
    [29]
    中华人民共和国地质矿产部. 地下水质检验方法离子选择电极法测定氟化物:DZ/T 0064.54-1993[S]. 北京,1993.
    [30]
    中华人民共和国地质矿产部. 地下水质检验方法银量滴定法测定氯化物:DZ/T 0064.50-1993[S]. 北京,1993.
    [31]
    中华人民共和国地质矿产部. 地下水质检验方法乙二胺四乙酸二钠-钡滴定法测定硫酸根:DZ/T 0064.64-1993[S]. 北京,1993.
    [32]
    中华人民共和国地质矿产部. 地下水质检验方法滴定法测定碳酸根、重碳酸根和氢氧根:DZ/T 0064.49-1993[S]. 北京,1993.
    [33]
    中华人民共和国地质矿产部. 地下水质检验方法紫外分光光度法测定硝酸根:DZ/T 0064.59-1993[S]. 北京,1993.
    [34]
    中华人民共和国地质矿产部. 地下水质检验方法分光光度法测定亚硝酸根:DZ/T 0064.60-1993[S]. 北京,1993.
    [35]
    环境保护部. 水质32种元素的测定电感耦合等离子体发射光谱法:HJ 776-2015[S]. 北京:中国环境科学出版社,2015.
    [36]
    国家环境保护总局. 水质化学需氧量的测定快速消解分光光度法:HJ/T 399-2007[S]. 北京:中国环境科学出版社,2007.
    [37]
    中华人民共和国地质矿产部. 地下水质检验方法对氨基二甲基苯胺比色法测定硫化物:DZ/T 0064.67-1993[S]. 北京,1993.
    [38]
    中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准:饮用天然矿泉水检测方法:GB 8538-2016[S]. 北京,2016.
    [39]
    中华人民共和国地质矿产部. 地下水质检验方法磷铋钼蓝比色法测定磷酸根:DZ/T 0064.61-1993[S]. 北京,1993.
    [40]
    环境保护部. 水质五日生化需氧量(BOD5)的测定稀释与接种法:HJ 505-2009[S]. 北京:中国环境科学出版社,2009.
    [41]
    中华人民共和国农业部. 土壤检测第2部分:土壤pH的测定:NY/T 1121.2-2006[S]. 北京:中国农业出版社,2006.
    [42]
    中华人民共和国国土资源部. 区域地球化学样品分析方法第2部分:氧化钙等27个成分量测定电感耦合等离子体原子发射光谱法:DZ/T 0279.2-2016[S]. 北京:地质出版社,2016.
    [43]
    中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 土壤质量氟化物的测定离子选择电极法:GB/T 22104-2008[S]. 北京:中国标准出版社,2006.
    [44]
    国家林业局. 森林土壤全硫的测定:LY/T 1255-1999[S]. 北京,1999.
    [45]
    环境保护部. 土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定氯化钾溶液提取-分光光度法:HJ 634-2012[S]. 北京:中国环境科学出版社,2012.
    [46]
    黄明勇,张清,王振宇,等. 中新生态城土壤质量现状及改良利用途径[J]. 城市环境与城市生态,2010,23(4):29-32.
    [47]
    郭紫伊. 天津滨海及其周边地区土壤盐渍化特征分析[D]. 天津:天津大学,2018.
    [48]
    郑义. 滨海盐碱地淡水透镜形成模拟及保水研究[D]. 天津:天津大学,2014.
    [49]
    杨庆,李洋,崔斌,等. 城市污水处理过程中恶臭气体释放的研究进展[J]. 环境科学学报,2019,39(7):2079-2087.
    [50]
    顾建. 高效组合澄清系统在某雨水泵站污染物削减中的应用[J]. 净水技术,2019,38(增刊2):102-105.
    [51]
    尹海龙,王月,赵刚. 分流制系统雨水管网混接旱天排放污染特征研究[J]. 环境科学学报,2019,39(10):3551-3558.
    [52]
    SENEVIRATHNA S, RAMZAN S, MORGAN J. A sustainable and fully automated process to treat stored rainwater to meet drinking water quality guidelines[J]. Process Safety and Environmental Protection, 2019, 130:190-196.
    [53]
    孙韶玲,盛彦清,孙瑞川,等. 河流水体黑臭演化过程及恶臭硫化物的产生机制[J]. 环境科学与技术,2018,41(3):15-22.
    [54]
    张静,周玉文,王中正,等. 北方城市天然降雨中氨氮污染特征研究[J]. 环境科学与技术,2016,39(6):129-134.
    [55]
    魏青义. 基于海绵城市理论的城市建设探讨与思考[J]. 住宅科技,2020(1):29-32.
    [56]
    PISTOCCHI A. A preliminary pan-European assessment of pollution loads from urban runoff[J]. Environmental Research, 2020, 182:109129.
  • Relative Articles

    [1]LI Zhenhua. AN EXPERIMENTAL STUDY ON HIGH EFFICIENCY INTERCEPTION AND PURIFICATION FOR URBAN RAINWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 108-115. doi: 10.13205/j.hjgc.202412014
    [2]PENG Yuyao, LI Panwu, GAO Xiaobo, YU Huibin, GUO Xujing. EFFECT OF LOESS FLOCCULANT ON WATER PURIFICATION AND DISSOLVED ORGANIC MATTER REMOVAL IN SHAHU LAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 140-146. doi: 10.13205/j.hjgc.202305019
    [3]NIU Yi, LI Wei, LI Gongke, WANG Weixing, LI Mingming, CAO Shuping, LÜ Xiaowen. SIMULATION OF RESTORATION OF GROUNDWATER POLLUTION IN A LANDFILL IN COASTAL PLAIN AREA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 12-20. doi: 10.13205/j.hjgc.202303002
    [4]YOU Yangyang, LIANG Zengqiang, HUO Ning. GROUNDWATER EVALUATION OF INFORMAL LANDFILLS BASED ON WATER QUALITY IDENTIFICATION INDEX METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 264-269,311. doi: 10.13205/j.hjgc.202312033
    [5]WEI Qing, CHEN Yongqi, XIE Yifan, LIN Jingying, YIN Hailong. POLLUTION MECHANISM OF WET-WEATHER PUMPING DISCHARGE IN SEPARATED STORMWATER DRAINAGE SYSTEMS BASED ON ARTIFICIAL NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 54-60,181. doi: 10.13205/j.hjgc.202312006
    [6]WANG Gang, WO Yubao, MAO Jingqiao, XIAO Yang, PENG Jirong. SPATIO-TEMPORAL VARIATION ANALYSIS OF WATER QUALITY IN SLUICE-CONTROLLED URBAN RIVER BASED ON TWO-STEP CLUSTER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 117-122,160. doi: 10.13205/j.hjgc.202201017
    [7]ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029
    [8]LIANG Yu, YAN Haihong, YIN Qin, NIAN Yuegang, ZHANG Xianqi, WANG Xingzhi. RESEARCH ON GROUNDWATER POLLUTION SITUATION IN CHIFENG LANDFILL AND CAUSE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 188-195,223. doi: 10.13205/j.hjgc.202204027
    [9]SONG Binxue, HE Yueling, JIA Linchun, CENG Lin, CHEN Hong, XUE Gang. Fe0 SUPPORTED MIXOTROPHIC DENITRIFICATION FOR GROUNDWATER TREATMENTS: PERFORMANCE AND POTENTIAL MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 22-30,54. doi: 10.13205/j.hjgc.202208003
    [10]TIAN Han-xin, WANG Jia-jun, ZHOU Lei, XU De-fu, ZHANG Jian-wei, PENGCUO Ci-ren. WATER QUALITY STATUS AND POLLUTION ASSESSMENT OF LHALU WETLAND IN TIBET IN DIFFERENT PERIODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 198-206. doi: 10.13205/j.hjgc.202106030
    [11]XIANG Jia-jia. GROUNDWATER POLLUTION CONTROL BY CEMENT SOIL BARRIER WALL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 63-68,91. doi: 10.13205/j.hjgc.202109010
    [12]XIAO Yong, MO Pei, YIN Shi-yang, LIU Hong-lu, ZHANG Yun-hui. HYDROCHEMICAL CHARACTERISTICS AND GENESIS OF GROUNDWATER IN SOUTHERN SUBURB OF BEIJING PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 99-107. doi: 10.13205/j.hjgc.202108013
    [13]SUN Jun-liang, GONG Zhi-qiang, LI Lu, NIU Hao-bo, YIN Le-yi, CHEN Jian. OPTIMIZATION OF GROUNDWATER PUMPING SCHEME FOR A CHLORINATED HYDROCARBON-CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 172-178. doi: 10.13205/j.hjgc.202111023
    [14]LIU Zhao, ZHOU Hong, LIU Wei, CAO Wen-jia, LAN Sheng-tao. HEAVY METAL CONCENTRATION PROPERTIES ANALYSIS AND PRIMARY HEALTH RISK ASSESSMENT IN GROUNDWATER IN THE QINGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 196-203. doi: 10.13205/j.hjgc.202105028
    [15]WANG Hai-shan, ZOU Ping, DAI Ben, ZHU Fang-fang, WANG Zi-tong, AIXIAN Si-qi. OPTIMIZING BIOLOGICAL COMBINATION TECHNOLOGY TO IMPROVE PURIFICATION EFFICIENCY OF BLACK-ODOR WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 24-32,39. doi: 10.13205/j.hjgc.202101003
    [16]CHEN Si-li, YI Zhong-yuan, WANG Ji, PAN Chao-yi, CHANG Sha, GUO Qing-wei, ZHOU Jun-guang, SUN Lan. CASE STUDY ON REMEDIATION OF DIESEL CONTAMINATED SOIL AND GROUNDWATER BY ELUENT-EXTRACTION TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 178-182. doi: 10.13205/j.hjgc.202001029
    [17]ZHANG Ling-ling, TERIGELE, LI Jing-nan, ZHAO Yan-hui, YAN Qing-qing, ER Wen-fei. APPLICATION OF ULTRAFINE BUBBLE OXYGEN ENRICHMENT AND BIOLOGICAL ACTIVATION TECHNOLOGY IN BLACK AND ODOROUS WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 66-71,156. doi: 10.13205/j.hjgc.202011011
    [18]ZHENG Kai-kai, ZHOU Zhen, ZHOU Yuan, WANG Yan, ZHOU Jian-chun, LI Ji. A QUANTITIVE STUDY ON PROPORTION OF GROUNDWATER, RIVER WATER AND RAINWATER IN INFLUENT OF URBAN WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 75-80. doi: 10.13205/j.hjgc.202007012
  • Cited by

    Periodical cited type(4)

    1. 芦三强,魏佳芳. 跌流竖井进水管附近负压突增现象的机理解析及结构优化. 环境工程. 2024(02): 97-103 . 本站查看
    2. 齐梓漩,常素云,向阳,王松庆,孙井梅. 外源硫输入对城市水体黑臭化的诱导效应. 中国给水排水. 2024(07): 6-12 .
    3. 陈其楠. 污水泵站恶臭气体排放预测模型研究. 环境科学与管理. 2024(04): 124-127 .
    4. 李广英,何跃君,冯朝晖,葛劲松,王凌青,关海钢,罗梦超. 青南地区城镇污水处理厂综合效率评估分析. 地球环境学报. 2021(04): 436-446 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.8 %FULLTEXT: 13.8 %META: 83.6 %META: 83.6 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.5 %其他: 6.5 %其他: 0.2 %其他: 0.2 %China: 4.1 %China: 4.1 %Italy: 0.2 %Italy: 0.2 %[]: 0.2 %[]: 0.2 %上海: 2.7 %上海: 2.7 %临汾: 0.2 %临汾: 0.2 %北京: 5.3 %北京: 5.3 %南京: 0.7 %南京: 0.7 %南充: 0.7 %南充: 0.7 %南昌: 0.7 %南昌: 0.7 %南通: 0.2 %南通: 0.2 %厦门: 0.5 %厦门: 0.5 %台州: 0.2 %台州: 0.2 %呼和浩特: 0.5 %呼和浩特: 0.5 %哈尔滨: 0.5 %哈尔滨: 0.5 %嘉兴: 0.5 %嘉兴: 0.5 %天津: 3.1 %天津: 3.1 %太原: 0.2 %太原: 0.2 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %平凉: 0.2 %平凉: 0.2 %广州: 0.7 %广州: 0.7 %廊坊: 0.7 %廊坊: 0.7 %张家口: 2.4 %张家口: 2.4 %徐州: 0.2 %徐州: 0.2 %德州: 0.2 %德州: 0.2 %成都: 0.5 %成都: 0.5 %无锡: 0.7 %无锡: 0.7 %昆明: 0.7 %昆明: 0.7 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.4 %杭州: 1.4 %格林维尔: 1.0 %格林维尔: 1.0 %梧州: 0.2 %梧州: 0.2 %武汉: 0.7 %武汉: 0.7 %汕头: 0.5 %汕头: 0.5 %沈阳: 0.7 %沈阳: 0.7 %济源: 0.5 %济源: 0.5 %深圳: 0.7 %深圳: 0.7 %温州: 0.5 %温州: 0.5 %漯河: 0.7 %漯河: 0.7 %濮阳: 0.2 %濮阳: 0.2 %石家庄: 0.2 %石家庄: 0.2 %芒廷维尤: 13.8 %芒廷维尤: 13.8 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.5 %苏州: 0.5 %衢州: 0.2 %衢州: 0.2 %西宁: 34.5 %西宁: 34.5 %西安: 1.7 %西安: 1.7 %贵阳: 0.2 %贵阳: 0.2 %运城: 2.2 %运城: 2.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.5 %郑州: 0.5 %重庆: 0.5 %重庆: 0.5 %长治: 0.5 %长治: 0.5 %阳泉: 1.0 %阳泉: 1.0 %青岛: 0.5 %青岛: 0.5 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %其他其他ChinaItaly[]上海临汾北京南京南充南昌南通厦门台州呼和浩特哈尔滨嘉兴天津太原宣城常州常德平凉广州廊坊张家口徐州德州成都无锡昆明晋城朝阳杭州格林维尔梧州武汉汕头沈阳济源深圳温州漯河濮阳石家庄芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州重庆长治阳泉青岛香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (344) PDF downloads(11) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return