Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WU Meng-yi, LONG Xin, GAO Cong-hao, QIN Xiao, CHEN Yue, TANG Yu-lin. FABRICATION OF CARBON NANOTUBE-DOPED PbO2 COMPOSITE ELECTRODE AND MECHANISM OF CATALYTIC OXIDATION OF BISPHENOL A[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 50-56,106. doi: 10.13205/j.hjgc.202104009
Citation: WU Meng-yi, LONG Xin, GAO Cong-hao, QIN Xiao, CHEN Yue, TANG Yu-lin. FABRICATION OF CARBON NANOTUBE-DOPED PbO2 COMPOSITE ELECTRODE AND MECHANISM OF CATALYTIC OXIDATION OF BISPHENOL A[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 50-56,106. doi: 10.13205/j.hjgc.202104009

FABRICATION OF CARBON NANOTUBE-DOPED PbO2 COMPOSITE ELECTRODE AND MECHANISM OF CATALYTIC OXIDATION OF BISPHENOL A

doi: 10.13205/j.hjgc.202104009
  • Received Date: 2020-03-16
    Available Online: 2021-07-21
  • CNT-PbO2 composite electrodes with high stability and catalytic activity were obtained by doping carbon nanotubes (CNTs) with different concentrations into PbO2 electrodes by electrochemical deposition. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) analysis proved that CNTs were successfully doped into the PbO2 electrode surface active layer, leading to a decline of PbO2 particle size and an increase of activity surface area. The amount of ·OH radicals generated in the degradation system of bisphenol A (BPA) by CNT-PbO2 electrodes decreased. However, the degradation effect was improved. Cyclic voltammetry (CV) curves and the accelerated life test indicated that the degradation mechanism of BPA was mainly ascribed to the stronger electrochemical direct oxidation ability and higher stability of CNT-PbO2 composite electrodes. Finally, the dominant by-products were obtained, and plausible degradation pathway of BPA was proposed by UPLC & Q-TOF MS test.
  • [1]
    ZHU X P, NI J R, LAI P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes[J]. Water Research, 2009, 43(17):4347-4355.
    [2]
    WEI J Z, FENG Y J, SUN X J, et al. Effectiveness and pathways of electrochemical degradation of pretilachlor herbicides[J]. Journal of Hazardous Materials, 2011, 189(1/2):84-91.
    [3]
    PANIZZA M, CERISOLA G. Influence of anode material on the electrochemical oxidation of 2-naphthol:Part 1. Cyclic voltammetry and potential step experiments[J]. Electrochimica Acta, 2003, 48(23):3491-3497.
    [4]
    ZHANG C, LIU J H, CHEN B M. Effect of CeO2 and graphite powder on the electrochemical performance of Ti/PbO2 anode for zinc electrowinning[J]. Ceramics International, 2018, 44(16):19735-19742.
    [5]
    AMADELLI R, SAMIOLO L, VELICHENKO A B, et al. Composite PbO2-TiO2 materials deposited from colloidal electrolyte:electrosynthesis, and physicochemical properties[J]. Electrochimica Acta, 2009, 54(22):5239-5245.
    [6]
    ZHANG S, QUAN X, ZHENG J F, et al. Probing the interphase "HO zone" originated by carbon nanotube during catalytic ozonation[J]. Water Research, 2017, 122:86-95.
    [7]
    DUAN X Y, MA F, YUAN Z X, et al. Lauryl benzene sulfonic acid sodium-carbon nanotube-modified PbO2 electrode for the degradation of 4-chlorophenol[J]. Electrochimica Acta, 2012, 76:333-343.
    [8]
    CHANG L M, ZHOU Y, DUAN X Y, et al. Preparation and characterization of carbon nanotube and Bi co-doped PbO2 electrode[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4):1338-1346.
    [9]
    段小月. 碳纳米管改性PbO2电极制备及降解水中酚类污染物的研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
    [10]
    DAI Q Z, XIA Y J, CHEN J M. Mechanism of enhanced electrochemical degradation of highly concentrated aspirin wastewater using a rare earth La-Y co-doped PbO2 electrode[J]. Electrochimica Acta, 2016, 188:871-881.
    [11]
    XU F, CHANG L M, DUAN X Y, et al. A novel layer-by-layer CNT/PbO2 anode for high-efficiency removal of PCP-Na through combining adsorption/electrosorption and electrocatalysis[J]. Electrochimica Acta, 2019, 300:53-66.
    [12]
    YANG C J, SHEN Q F, ZHAI D C, et al. Carbon nanotubes sheathed in lead for the oxygen evolution in zinc electrowinning[J]. Journal of Applied Electrochemistry, 2019, 49(1):67-77.
    [13]
    GILROY D. The breakdown of PbO2-Ti anodes[J]. Journal of Applied Electrochemistry, 1982, 12(2):171-183.
    [14]
    罗瑶, 薛娟琴, 于丽花, 等. 不同咪唑基离子液体改性PbO2电极降解苯酚废水[J]. 环境工程学报, 2017, 11(5):2671-2676.
    [15]
    ZHAN M J, YANG X, XIAN Q M, et al. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances[J]. Chemosphere, 2006, 63(3):378-386.
    [16]
    POERSCHMANN J, TROMMLER U, GÓRECKI T. Aromatic intermediate formation during oxidative degradation of Bisphenol A by homogeneous sub-stoichiometric Fenton reaction[J]. Chemosphere, 2010, 79(10):975-986.
  • Relative Articles

    [1]MA Ruohan, LI Zhouyan, CAI Teng, NIU Chengxin, WANG Xueye, WANG Zhiwei. RESEARCH PROGRESS ON EMISSION AND CONTROL OF NON-CO2 GREENHOUSE GASES IN MUNICIPAL DRAINAGE NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 1-12. doi: 10.13205/j.hjgc.202411001
    [2]PAN Siyu, ZHANG Meiling. PREDICTION OF CARBON DIOXIDE EMISSION IN GANSU PROVINCE BASED ON BP NEURAL NETWORK AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 61-68,85. doi: 10.13205/j.hjgc.202307009
    [3]XIONG Wei. A HIGH ORBIT HIGH SPATIOTEMPORAL RESOLUTION ATMOSPHERIC CARBON DIOXIDE MONITOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 1-8,123. doi: 10.13205/j.hjgc.202310001
    [4]ZHANG Li, WAN Xin, JIANG Han-ying, LI Xuan, XU Shao-dong, CAI Bo-feng. QUANTITATIVE EVALUATION ON THE STATUS OF CO2 EMISSIONS: PEAK PERIOD, PLATEAU PERIOD, AND DECLINE PERIOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 1-7. doi: 10.13205/j.hjgc.202110001
    [5]DONG Jin-chi, WENG Hui, PANG Ling-yun, CAI Bo-feng, LIU Hui, WANG Jin-nan, YANG Lu, XIA Chu-yu, CHEN Yang. MARGINAL ABATEMENT COST CURVES AND MITIGATION TECHNOLOGIES FOR PETROCHEMICAL AND CHEMICAL INDUSTRIES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 32-40. doi: 10.13205/j.hjgc.202110005
    [6]YANG Lu, YANG Xiu, LIU Hui, XIA Chu-yu, CAI Bo-feng, DONG Jin-chi, CHEN Yang. CARBON DIOXIDE EMISSION REDUCTION TECHNOLOGY SCREENING AND COST STUDY IN BUILDING SECTOR OF CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 41-49. doi: 10.13205/j.hjgc.202110006
    [7]ZHU Shu-ying, LIU Hui, DONG Jin-chi, CAI Bo-feng, HE Jie, YANG Lu, XIA Chu-yu, TANG Ling. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST CURVES FOR CEMENT INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 15-22. doi: 10.13205/j.hjgc.202110003
    [8]LI Sa, LIN Qian-guo, LIANG Xi, LEI Ming, JIANG Meng-fei, YANG Yong-zhi. TECHNICAL AND ECONOMIC ANALYSIS OF CARBON DIOXIDE CAPTURE OF IRON AND STEEL BLAST FURNACE GAS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 117-122,175. doi: 10.13205/j.hjgc.202109017
    [9]ZANG Hong-kuan, YANG Wei-shan, ZHANG Jing, WU Peng-cheng, CAO Li-bin, XU Ye. RESEARCH ON CARBON DIOXIDE EMISSIONS PEAKING IN BEIJING-TIANJIN-HEBEI CITY AGGLOMERATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 19-24,77. doi: 10.13205/j.hjgc.202011004
  • Cited by

    Periodical cited type(6)

    1. 薛璐,马俊杰,王浩璠,李琳,马劲风. 鄂尔多斯盆地CCS-EOR项目CO_2泄漏环境风险评估. 环境监测管理与技术. 2024(02): 64-68 .
    2. 廖松林,马诗佳,夏菖佑,高志豪,刘牧心,梁希,戴青,黄新我,蒋泽原,于冰清. 玄武岩CO_2矿化封存监测方法和技术体系研究. 水文地质工程地质. 2024(04): 41-52 .
    3. 何淑娴. 碳中和背景下CCUS环境风险预防及责任承担制度研究. 资源节约与环保. 2024(07): 139-144 .
    4. 赵艺芳,白洋. 碳捕获、利用与封存技术纳入碳市场的可行性与制度设计. 环境生态学. 2024(12): 79-85 .
    5. 韩洁平,吕芳菲,戈泽琦. 燃煤电厂CCUS项目投资决策评价研究. 价格理论与实践. 2024(06): 121-128 .
    6. 刘涛,曹杨,周伟,杨雅琪,雷博雯,胡毅然,宋光春,韩辉. 海上CCS/CCUS工程CO_2泄漏风险评估技术分析. 工业安全与环保. 2023(S2): 77-81 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.7 %FULLTEXT: 14.7 %META: 85.3 %META: 85.3 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.8 %其他: 15.8 %其他: 0.7 %其他: 0.7 %China: 1.4 %China: 1.4 %United States: 0.4 %United States: 0.4 %上海: 1.1 %上海: 1.1 %东莞: 0.4 %东莞: 0.4 %东营: 0.4 %东营: 0.4 %北京: 4.7 %北京: 4.7 %南京: 0.7 %南京: 0.7 %南通: 0.7 %南通: 0.7 %台北: 0.4 %台北: 0.4 %台州: 0.7 %台州: 0.7 %嘉兴: 0.7 %嘉兴: 0.7 %大庆: 1.8 %大庆: 1.8 %大连: 0.7 %大连: 0.7 %天津: 6.1 %天津: 6.1 %安康: 0.4 %安康: 0.4 %宜春: 0.4 %宜春: 0.4 %常州: 1.1 %常州: 1.1 %广州: 0.7 %广州: 0.7 %成都: 0.4 %成都: 0.4 %扬州: 2.9 %扬州: 2.9 %昌吉: 0.4 %昌吉: 0.4 %杭州: 5.4 %杭州: 5.4 %榆林: 1.1 %榆林: 1.1 %武汉: 2.5 %武汉: 2.5 %深圳: 0.7 %深圳: 0.7 %温州: 1.4 %温州: 1.4 %漯河: 8.6 %漯河: 8.6 %石家庄: 0.4 %石家庄: 0.4 %芒廷维尤: 8.2 %芒廷维尤: 8.2 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.4 %苏州: 0.4 %衡阳: 0.4 %衡阳: 0.4 %衢州: 2.2 %衢州: 2.2 %西宁: 19.7 %西宁: 19.7 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.7 %运城: 0.7 %邯郸: 1.4 %邯郸: 1.4 %郑州: 1.1 %郑州: 1.1 %长沙: 1.1 %长沙: 1.1 %青岛: 1.1 %青岛: 1.1 %其他其他ChinaUnited States上海东莞东营北京南京南通台北台州嘉兴大庆大连天津安康宜春常州广州成都扬州昌吉杭州榆林武汉深圳温州漯河石家庄芒廷维尤芝加哥苏州衡阳衢州西宁贵阳运城邯郸郑州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (422) PDF downloads(31) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return