Citation: | WU Meng-yi, LONG Xin, GAO Cong-hao, QIN Xiao, CHEN Yue, TANG Yu-lin. FABRICATION OF CARBON NANOTUBE-DOPED PbO2 COMPOSITE ELECTRODE AND MECHANISM OF CATALYTIC OXIDATION OF BISPHENOL A[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 50-56,106. doi: 10.13205/j.hjgc.202104009 |
[1] |
ZHU X P, NI J R, LAI P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes[J]. Water Research, 2009, 43(17):4347-4355.
|
[2] |
WEI J Z, FENG Y J, SUN X J, et al. Effectiveness and pathways of electrochemical degradation of pretilachlor herbicides[J]. Journal of Hazardous Materials, 2011, 189(1/2):84-91.
|
[3] |
PANIZZA M, CERISOLA G. Influence of anode material on the electrochemical oxidation of 2-naphthol:Part 1. Cyclic voltammetry and potential step experiments[J]. Electrochimica Acta, 2003, 48(23):3491-3497.
|
[4] |
ZHANG C, LIU J H, CHEN B M. Effect of CeO2 and graphite powder on the electrochemical performance of Ti/PbO2 anode for zinc electrowinning[J]. Ceramics International, 2018, 44(16):19735-19742.
|
[5] |
AMADELLI R, SAMIOLO L, VELICHENKO A B, et al. Composite PbO2-TiO2 materials deposited from colloidal electrolyte:electrosynthesis, and physicochemical properties[J]. Electrochimica Acta, 2009, 54(22):5239-5245.
|
[6] |
ZHANG S, QUAN X, ZHENG J F, et al. Probing the interphase "HO zone" originated by carbon nanotube during catalytic ozonation[J]. Water Research, 2017, 122:86-95.
|
[7] |
DUAN X Y, MA F, YUAN Z X, et al. Lauryl benzene sulfonic acid sodium-carbon nanotube-modified PbO2 electrode for the degradation of 4-chlorophenol[J]. Electrochimica Acta, 2012, 76:333-343.
|
[8] |
CHANG L M, ZHOU Y, DUAN X Y, et al. Preparation and characterization of carbon nanotube and Bi co-doped PbO2 electrode[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4):1338-1346.
|
[9] |
段小月. 碳纳米管改性PbO2电极制备及降解水中酚类污染物的研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
|
[10] |
DAI Q Z, XIA Y J, CHEN J M. Mechanism of enhanced electrochemical degradation of highly concentrated aspirin wastewater using a rare earth La-Y co-doped PbO2 electrode[J]. Electrochimica Acta, 2016, 188:871-881.
|
[11] |
XU F, CHANG L M, DUAN X Y, et al. A novel layer-by-layer CNT/PbO2 anode for high-efficiency removal of PCP-Na through combining adsorption/electrosorption and electrocatalysis[J]. Electrochimica Acta, 2019, 300:53-66.
|
[12] |
YANG C J, SHEN Q F, ZHAI D C, et al. Carbon nanotubes sheathed in lead for the oxygen evolution in zinc electrowinning[J]. Journal of Applied Electrochemistry, 2019, 49(1):67-77.
|
[13] |
GILROY D. The breakdown of PbO2-Ti anodes[J]. Journal of Applied Electrochemistry, 1982, 12(2):171-183.
|
[14] |
罗瑶, 薛娟琴, 于丽花, 等. 不同咪唑基离子液体改性PbO2电极降解苯酚废水[J]. 环境工程学报, 2017, 11(5):2671-2676.
|
[15] |
ZHAN M J, YANG X, XIAN Q M, et al. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances[J]. Chemosphere, 2006, 63(3):378-386.
|
[16] |
POERSCHMANN J, TROMMLER U, GÓRECKI T. Aromatic intermediate formation during oxidative degradation of Bisphenol A by homogeneous sub-stoichiometric Fenton reaction[J]. Chemosphere, 2010, 79(10):975-986.
|
[1] | MA Ruohan, LI Zhouyan, CAI Teng, NIU Chengxin, WANG Xueye, WANG Zhiwei. RESEARCH PROGRESS ON EMISSION AND CONTROL OF NON-CO2 GREENHOUSE GASES IN MUNICIPAL DRAINAGE NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 1-12. doi: 10.13205/j.hjgc.202411001 |
[2] | PAN Siyu, ZHANG Meiling. PREDICTION OF CARBON DIOXIDE EMISSION IN GANSU PROVINCE BASED ON BP NEURAL NETWORK AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 61-68,85. doi: 10.13205/j.hjgc.202307009 |
[3] | XIONG Wei. A HIGH ORBIT HIGH SPATIOTEMPORAL RESOLUTION ATMOSPHERIC CARBON DIOXIDE MONITOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 1-8,123. doi: 10.13205/j.hjgc.202310001 |
[4] | ZHANG Li, WAN Xin, JIANG Han-ying, LI Xuan, XU Shao-dong, CAI Bo-feng. QUANTITATIVE EVALUATION ON THE STATUS OF CO2 EMISSIONS: PEAK PERIOD, PLATEAU PERIOD, AND DECLINE PERIOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 1-7. doi: 10.13205/j.hjgc.202110001 |
[5] | DONG Jin-chi, WENG Hui, PANG Ling-yun, CAI Bo-feng, LIU Hui, WANG Jin-nan, YANG Lu, XIA Chu-yu, CHEN Yang. MARGINAL ABATEMENT COST CURVES AND MITIGATION TECHNOLOGIES FOR PETROCHEMICAL AND CHEMICAL INDUSTRIES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 32-40. doi: 10.13205/j.hjgc.202110005 |
[6] | YANG Lu, YANG Xiu, LIU Hui, XIA Chu-yu, CAI Bo-feng, DONG Jin-chi, CHEN Yang. CARBON DIOXIDE EMISSION REDUCTION TECHNOLOGY SCREENING AND COST STUDY IN BUILDING SECTOR OF CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 41-49. doi: 10.13205/j.hjgc.202110006 |
[7] | ZHU Shu-ying, LIU Hui, DONG Jin-chi, CAI Bo-feng, HE Jie, YANG Lu, XIA Chu-yu, TANG Ling. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST CURVES FOR CEMENT INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 15-22. doi: 10.13205/j.hjgc.202110003 |
[8] | LI Sa, LIN Qian-guo, LIANG Xi, LEI Ming, JIANG Meng-fei, YANG Yong-zhi. TECHNICAL AND ECONOMIC ANALYSIS OF CARBON DIOXIDE CAPTURE OF IRON AND STEEL BLAST FURNACE GAS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 117-122,175. doi: 10.13205/j.hjgc.202109017 |
[9] | ZANG Hong-kuan, YANG Wei-shan, ZHANG Jing, WU Peng-cheng, CAO Li-bin, XU Ye. RESEARCH ON CARBON DIOXIDE EMISSIONS PEAKING IN BEIJING-TIANJIN-HEBEI CITY AGGLOMERATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 19-24,77. doi: 10.13205/j.hjgc.202011004 |