Citation: | YIN Zi-yuan, ZHANG Kai-shan. MODEL ANALYSIS FOR EMISSIONS OF LIGHT-DUTY GASOLINE VEHICLES IN A TYPICAL CITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 64-71. doi: 10.13205/j.hjgc.202104011 |
[1] |
中华人民共和国生态环境部.中国移动源环境管理年报2019[R].北京:中华人民共和国生态环境部, 2019.8.
|
[2] |
张凯山,宋宁,第宝锋. 谈建立城市特征驾驶工况的必要性[C]//四川省环境科学学会二〇一一年学术年会论文集,2011.287-293.
|
[3] |
USEPA. User's Guide to MOBILE6.1 and MOBILE6.2:Mobile Source Emission Factor Model[R]. EPA420-R-03-010, 2003.
|
[4] |
California Air Resource Board. EMFAC User's Guide[M]. U.S.California:California Air Resource Board, 2002. 20-36.
|
[5] |
NTZIACHRISTOS L, SAMARAS Z, et al. COPERT Ⅲ Computer program to calculate emissions from road transport, Methodology and emission factors (Version 2.1)[R]. Copenhagen:European Environmental Agency, 2000.
|
[6] |
张兰怡,胡喜生,邱荣祖. 机动车尾气污染物排放模型研究综述[J]. 世界科技研究与发展, 2017,39(4):355-362.
|
[7] |
陈琳,张凯山,张健,等. 城市特征驾驶工况建立及结果比较研究[J]. 环境科学与技术, 2014, 37(1):148-154.
|
[8] |
WANG A J, GE Y S, TAN J W, et al. On-road pollutant emission and fuel consumption characteristics of buses in Beijing[J]. Journal of Environmental Sciences,2011, 23(3):419-426.
|
[9] |
USEPA. User Guide for Motor Vehicle Emission Simulator MOVES2010(EPA-420-B-09-041)[R]. Washington D.C.:U.S. Environmental Protection Agency, 2012.
|
[10] |
JIMENEZ-PALACIOS J L. Understanding and quantifying motor vehicle emissions with vehicle specific power and TILDAS remote sensing[D]. Cambridge:Massachusetts Institute of Technology, 1999. 54-56.
|
[11] |
FREY H C, ROUPHAIL N M, UNAL A, et al. Emissions reduction through better traffic management:an empirical evaluation based upon on-road measurements[C]//North Carolina Department of Transportation. North Carolina:North Carolina State University, 2001.
|
[12] |
UNAL A, FREY H C, ROUPHAIL N M. Quantification of highway vehicle emissions hot spots based upon on-board measurements[J]. Journal of the Air & Waste Management Association (1995), 2004, 54(2):130-140.
|
[13] |
BECKWITH M, BATES E, GILLAH A, et al. NO2 hotspots:are we measuring in the right places?[J]. Atmospheric Environment:X, 2019, 2:100025.
|
[14] |
LEWIS R J. An introduction to classification and regression tree (CART) analysis[A]. In:the 2000 Annual Meeting of the Society for Academic Emergency Medicine. California:Harbor-UCLA Medical Center, 2000.
|
[15] |
LI Z, ZHANG K S, PANG K L, et al. A fuel-based approach for emission factor development for highway paving construction equipment in China[J]. Journal of the Air & Waste Management Association, 2016, 66(12):1214-1223.
|
[16] |
ODURO S D, HA Q P, DUC H. Vehicular emissions prediction with CART-BMARS hybrid models[J]. Transportation Research Part D:Transport and Environment, 2016, 49:188-202.
|
[17] |
AMIN T, BRYAN C P. Modeling multiple land use changes using ANN, CART and MARS:comparing tradeoffs in goodness of fit and explanatory power of data mining tools[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 28:102-116.
|
[18] |
ZHANG S C. Cost-sensitive KNN classification[J]. Neurocomputing, 2020, 391:234-242.
|
[19] |
DAS L, SIVARAM A, VENKATASUBRAMAANIAN V. Hidden representations in deep neural networks:Part 2. Regression problems[J]. Computers & Chemical Engineering, 2020, 139:106895.
|
[20] |
XU X D, ABDUL A H M, GUENSLER R. A modal-based approach for estimating electric vehicle energy consumption in transportation networks[J]. Transportation Research Part D:Transport and Environment, 2019, 75:249-264.
|
[21] |
CHEN L F, LIANG Z R, ZHANG X, et al. Characterizing particulate matter emissions from GDI and PFI vehicles under transient and cold start conditions[J]. Fuel, 2017, 189:131-140.
|
[22] |
YU S, DONG G,LI L. Transient characteristics of emissions during engine start/stop operation employing a conventional gasoline engine for HEV application[J]. International Journal of Automotive Technology, 2008, 9:543-549.
|
[23] |
YANG W D, ZHANG Q Y, WANG J L, et al, Emission characteristics and ozone formation potentials of VOCs from gasoline passenger cars at different driving modes[J]. Atmospheric Pollution Research, 2018, 9(5):804-813.
|
[24] |
WANG Y C, HAO C X, GE Y S, et al. Fuel consumption and emission performance from light-duty conventional/hybrid-electric vehicles over different cycles and real driving tests[J]. Fuel, 2020, 278:118340.
|
[25] |
钱芳. CNG/汽油双燃料出租车排放特性研究[D].南京:东南大学,2015.
|
[26] |
CHONG H S, PARK Y, KWON S, et al. Analysis of real driving gaseous emissions from light-duty diesel vehicles[J]. Transportation Research Part D:Transport and Environment, 2018, 65:485-499.
|
[27] |
李加强,葛蕴珊,何超,等.发动机工况与行驶挡位对轻型汽油车道路排放的影响[J].环境工程,2018,36(12):130-134
,154.
|
[28] |
HE L Q, HU J N, YANG L H, et al. Real-world gaseous emissions of high-mileage taxi fleets in China[J]. Science of the Total Environment,2019,659:267-274.
|
[29] |
付秉正,杨正军,尹航,等.轻型汽油车实际行驶污染物排放特性的研究[J].汽车工程,2017,39(4):376-380.
|
[1] | LU Qian, WU Yonggui, WANG Yiran, HAN Yiqin. ANALYSIS OF DYNAMIC CHANGES IN CARBON EMISSIONS OF UNDERGROUND RECLAIMED WATER PLANTS IN OPERATION PHASE IN GUIYANG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 106-114. doi: 10.13205/j.hjgc.202411012 |
[2] | DONG Wei, GENG Lizhi, FEI Bo. RESEARCH ON CHARACTERISTICS AND REACTIVITY OF VOLATILE ORGANIC COMPOUNDS EMISSION FROM A COKING ENTERPRISE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 161-166. doi: 10.13205/j.hjgc.202402019 |
[3] | WANG Xiaowei, MIN Chaohui, SONG Jun, ZHANG Jinghua, ZHAO Hongbing, CAO Chen, ZHANG Chi, LIU Tianfu, LIU Jingyin, HUANG Xiaoli, CHEN Liang, LIU Xin. EMISSION CHARACTERISTICS AND WHOLE PROCESS CONTROL IMPLEMENTATION PATH FOR VOCs IN RAILWAY TRANSPORTATION INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 102-111. doi: 10.13205/j.hjgc.202410013 |
[4] | XIA Qiongqiong, ZHENG Xingcan, GU Miao, LI Mai, SHANG Wei, TIAN Yongying, HUANG Haiwei, ONG Say Leong. CHARACTERIZATION OF SUMMER GREENHOUSE GAS EMISSIONS FROM SEPTIC TANKS AND MEASUMENT OF CH4 EMISSION FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 240-246. doi: 10.13205/j.hjgc.202409023 |
[5] | ZHANG Yili, LIU Hui, QIAN Xiaoyong. N2O EMISSION FROM MUNICIPAL WASTEWATER TREATMENT PLANTS: EMISSION CHARACTERISTICS AND CONTROL STRATEGIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 9-21. doi: 10.13205/j.hjgc.202404002 |
[6] | XIA Xue, SHAO Qianqi, CAO Yue, HUANG Wenxuan, FENG Qian, CAO Jiashun, LUO Jingyang. ANALYSIS OF ENERGY RECOVERY AND CARBON EMISSION DURING SLUDGE ANAEROBIC DIGESTION UNDER DIFFERENT TREATMENT ROUTES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 1-7,13. doi: 10.13205/j.hjgc.202307001 |
[7] | SUN Bingyang, YANG Shunsheng, CHEN Peng, ZHANG Dawen. DEVELOPMENT OF A PORTABLE WATER QUALITY DETECTION SYSTEM BASED ON ZYNQ IMAGE PROCESSING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 175-183,234. doi: 10.13205/j.hjgc.202307024 |
[8] | FEI Bo, BU Mengya, ZHANG Gangfeng. RESEARCH ON VOCs EMISSION CHARACTERISTICS AND OZONE FORMATION POTENTIAL OF TYPICAL PETROCHEMICAL PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 172-178. doi: 10.13205/j.hjgc.202305023 |
[9] | FU Jia-peng, JIN Chun-jiang, CHENG Xing-xing, DONG Yong, CHEN Hui-min. STATISTICAL INVESTIGATION AND ANALYSIS ON EMISSION CHARACTERISTICS OF TYPICAL VOCs EMISSION INDUSTRIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 188-194,125. doi: 10.13205/j.hjgc.202006031 |
[10] | FANG Li, LIU Ji-ye, NIE Lei, HE Li-juan, WANG Hai-lin. VOCs EMISSION CHARACTERISTICS AND OZONE IMPACT ANALYSIS OF TYPICAL AUTOMOBILE REPAIR ENTERPRISES IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 146-150,155. doi: 10.13205/j.hjgc.202010023 |
[11] | ZHANG Xing, QIAN Zhen-qing, ZHANG De-feng, ZHU Tao, YUAN Qian-cheng, YE Ze-fu. RESEARCH PROGRESS OF COOKING FUME EMISSION CHARACTERISTICS AND PURIFICATION TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 37-41,20. doi: 10.13205/j.hjgc.202001005 |
[18] | Guo Liang, Zhang Chen, Wang Xiangfeng, Liu Yu, Wang Fan, Zhang Fan, Miao Jie, Qian Feng. STUDY ON EMISSION OF HEAVY METALS FROM THE COAL-FIRED INDUSTRIAL BOILERS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 47-51. doi: 10.13205/j.hjgc.201508011 |