Citation: | FENG Shi-yu, LI Yang, LI Kai, HU Bin, LIU Ji, LU Qiang. PROGRESS IN PREPARATION OF CARBON NANOTUBES BY THERMAL CATALYSIS OF WASTE PLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 107-114. doi: 10.13205/j.hjgc.202104017 |
[1] |
WEN Y L, KIERZEK K, CHEN X C, et al. Mass production of hierarchically porous carbon nanosheets by carbonizing "real-world" mixed waste plastics toward excellent-performance supercapacitors[J]. Waste Management, 2019, 87:691-700.
|
[2] |
WANG J Q, SHEN B X, LAN M C, et al. Carbon nanotubes (CNTs) production from catalytic pyrolysis of waste plastics:The influence of catalyst and reaction pressure[J]. Catalysis Today, 2020, 351:50-57.
|
[3] |
赵传靓,闫仪,苏俊堂,等. 水体环境中纳米塑料的危害与检测研究进展[J]. 环境工程,2019,37(12):64-70.
|
[4] |
尹凤福,闫磊,韩清新,等. 近红外光谱(NIR)分选技术在塑料分选领域的应用[J]. 环境工程,2017,35(12):134-138.
|
[5] |
SOLIS M, SILVEIRA S. Technologies for chemical recycling of household plastics:a technical review and TRL assessment[J]. Waste Management, 2020, 105:128-138.
|
[6] |
ALI S, REHMAN S, LUAN H Y, et al. Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination[J]. Science of the Total Environment, 2019, 646:1126-1139.
|
[7] |
HAN T, NAG A, CHANDRA M, et al. Carbon nanotubes and its gas-sensing applications:a review[J]. Sensors and Actuators A:Physical, 2019, 291:107-143.
|
[8] |
RATHER S U. Preparation, characterization and hydrogen storage studies of carbon nanotubes and their composites:a review[J]. International Journal of Hydrogen Energy, 2020, 45(7):4653-4672.
|
[9] |
FARAVELLI T, PINCIROLI M, PISANO F, et al. Thermal degradation of polystyrene[J]. Journal of Analytical & Applied Pyrolysis, 2001, 60(1):103-121.
|
[10] |
马川. 典型溴系阻燃电子塑料的热解-催化提质实验研究[D]. 武汉:华中科技大学,2017.
|
[11] |
丁明洁,陈思顺,赵书伟,等. 论聚烯烃裂解反应中的油化效果增强效应[J]. 环境保护科学,2005,31(4):38-40.
|
[12] |
WANG Y, GAO X F, QIAN H J, et al. Quantum chemical simulations reveal acetylene-based growth mechanisms in the chemical vapor deposition synthesis of carbon nanotubes[J]. Carbon, 2014, 72:22-37.
|
[13] |
WANG J K, DENG X G, ZHANG H J, et al. Synthesis of carbon nanotubes via Fe-catalyzed pyrolysis of phenolic resin[J]. Physica E:Low-dimensional Systems and Nanostructures, 2017, 86:24-35.
|
[14] |
TESSONNIER J P, SU D S. Recent progress on the growth mechanism of carbon nanotubes:a review[J]. Chem Sus Chem, 2011, 4:824-847.
|
[15] |
KUMAR M, ANDO Y. Chemical vapor deposition of carbon nanotubes:a review on growth mechanism and mass production[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(6):3739-3758.
|
[16] |
ZHOU L, ENAKONDA L R, HARB M, et al. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials[J]. Applied Catalysis B:Environmental, 2017, 208:44-59.
|
[17] |
SCHAPER A K, HOU H Q, GREINER A, et al. The role of iron carbide in multiwalled carbon nanotube growth[J]. Journal of Catalysis, 2004, 222(1):250-254.
|
[18] |
姚丁丁. 废塑料催化热解制备富氢气体和碳纳米管的实验研究[D]. 武汉:华中科技大学,2018.
|
[19] |
LIU B L, TANG D M, SUN C H, et al. Importance of oxygen in the metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor-solid-solid mechanism[J]. Journal of the American Chemical Society, 2011, 133(2):197-199.
|
[20] |
LIN M, TAN J P Y, BOOTHROYD C, et al. Dynamical observation of bamboo-like carbon nanotube growth[J]. Nano Letters, 2007, 7(8):2234-2238.
|
[21] |
GONG J, LIU J, WAN D, et al. Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism[J]. Applied Catalysis A:General, 2012, 449:112-120.
|
[22] |
OHTA Y, OKAMOTO Y, IRLE S, et al. Density-functional tight-binding molecular dynamics simulations of SWCNT growth by surface carbon diffusion on an iron cluster[J]. Carbon, 2009, 47(5):1270-1275.
|
[23] |
OHTA Y, OKAMOTO Y, PAGE A J, et al. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle[J]. ACS Nano, 2009, 3(11):3413-3420.
|
[24] |
OHTA Y, OKAMOTO Y, IRLE S, et al. Rapid growth of a single-walled carbon nanotube on an iron cluster:density-functional tight-binding molecular dynamics simulations[J]. Acs Nano, 2008, 2(7):1437-1444.
|
[25] |
PAGE A J, CHANDRAKUMAR K R S, IRLE S, et al. SWNT nucleation from carbon-coated SiO2 nanoparticles via a vapor-solid-solid mechanism[J]. Journal of the American Chemical Society, 2011, 133(3):621-628.
|
[26] |
PAGE A J, CHANDRAKUMAR K R S, IRLE S, et al. Thermal annealing of SiC nanoparticles induces SWNT nucleation:evidence for a catalyst-independent VSS mechanism[J]. Physical Chemistry Chemical Physics, 2011, 13(34):15673-15680.
|
[27] |
LIU H P, TAKAGI D, CHIASHI S, et al. Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(6):4068-4073.
|
[28] |
张如范,张莹莹,谢欢欢,等. 水平阵列碳纳米管的可控制备及优异性能[J]. 中国科学(化学),2015,45(10):979-1009.
|
[29] |
PANAHI A, WEI Z X, SONG G C, et al. Influence of stainless-steel catalyst substrate type and pretreatment on growing carbon nanotubes from waste postconsumer plastics[J]. Industrial & Engineering Chemistry Research, 2019, 58(8):3009-3023.
|
[30] |
ABOUL-ENEIN A A, AWADALLAH A E, ABDEL-RAHMAN A, et al. Synthesis of multi-walled carbon nanotubes via pyrolysis of plastic waste using a two-stage process[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2018, 26(7):443-450.
|
[31] |
VEKSHA A, GIANNIS A, CHANG V. Conversion of non-condensable pyrolysis gases from plastics into carbon nanomaterials:Effects of feedstock and temperature[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124:16-24.
|
[32] |
VEKSHA A, YIN K, MOO J G S, et al. Processing of flexible plastic packaging waste into pyrolysis oil and multi-walled carbon nanotubes for electrocatalytic oxygen reduction[J]. Journal of Hazardous Materials, 2020, 387:121256.
|
[33] |
GONG J, LIU J, MA L, et al. Effect of Cl/Ni molar ratio on the catalytic conversion of polypropylene into Cu-Ni/C composites and their application in catalyzing "Click" reaction[J]. Applied Catalysis B Environmental, 2012, 117-118:185-193.
|
[34] |
WU C F, NAHIL M A, MISKOLCZI N, et al. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes[J]. Environmental Science & Technology, 2014, 48(1):819-826.
|
[35] |
龚江. 聚合物的碳化反应及其应用[D]. 长春:中国科学院长春应用化学研究所,2015.
|
[36] |
CUI J X, TAN S N, SONG R J. Universal Ni-Mo-Mg catalysts combined with carbon blacks for the preparation of carbon nanotubes from polyolefins[J]. Journal of Applied Polymer Science, 2017, 134(14):44647-44659.
|
[37] |
GONG J, FENG J D, LIU J, et al. Catalytic carbonization of polypropylene into cup-stacked carbon nanotubes with high performances in adsorption of heavy metallic ions and organic dyes[J]. Chemical Engineering Journal, 2014, 248:27-40.
|
[38] |
赵磊,王中慧,陈德珍,等. 杂质对废塑料裂解产物及污染物排放的影响[J]. 环境科学,2012,33(1):329-336.
|
[39] |
GOU X, ZHAO D, WU C F. Catalytic conversion of hard plastics to valuable carbon nanotubes[J]. Journal of Analytical and Applied Pyrolysis, 2020,145:104748.
|
[40] |
ACOMB J C, WU C F, WILLIAMS P T. The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks[J]. Applied Catalysis B:Environmental, 2016, 180:497-510.
|
[41] |
YAO D D, WU C F, YANG H P, et al. Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst[J]. Energy Conversion and Management, 2017, 148:692-700.
|
[42] |
公维光,徐元元,郑柏存. 镍基双金属催化剂/活性炭催化聚丙烯成炭及燃烧性能研究[J]. 化学工业与工程,2015,32(5):98-102.
|
[43] |
NAHIL M A, WU C F, WILLIAMS P T. Influence of metal addition to Ni-based catalysts for the co-production of carbon nanotubes and hydrogen from the thermal processing of waste polypropylene[J]. Fuel Processing Technology, 2015, 130:46-53.
|
[44] |
ABOUL-ENEIN A A, AWADALLAH A E. Impact of Co/Mo ratio on the activity of CoMo/MgO catalyst for production of high-quality multi-walled carbon nanotubes from polyethylene waste[J]. Materials Chemistry and Physics, 2019, 238:121879.
|
[45] |
ABOUL-ENEIN A A, AWADALLAH A E. Production of nanostructured carbon materials using Fe-Mo/MgO catalysts via mild catalytic pyrolysis of polyethylene waste[J]. Chemical Engineering Journal, 2018, 354:802-816.
|
[46] |
BAJAD G, VIJAYAKUMAR R P, RAKHUNDE P, et al. Processing of mixed-plastic waste to fuel oil, carbon nanotubes and hydrogen using multi-core reactor[J]. Chemical Engineering and Processing:Process Intensification, 2017, 121:205-214.
|
[47] |
AWADALLAH A E, ABOUL-ENEIN A A, YONIS M M, et al. Effect of structural promoters on the catalytic performance of cobalt-based catalysts during natural gas decomposition to hydrogen and carbon nanotubes[J]. Fullerene Science & Technology, 2016, 24(3):181-189.
|
[48] |
YU G J, GONG J L, ZHU D Z, et al. Efficient synthesis of carbon nanotubes over rare earth zeolites by thermal chemical vapor deposition at low temperature[J]. Diamond & Related Materials, 2006, 15(9):1261-1265.
|
[49] |
兰美晨,沈伯雄,王建桥,等. 不同活性炭负载的镍基催化剂上废塑料裂解制碳纳米管性能[J]. 燃料化学学报,2019,47(11):1-7.
|
[50] |
JIANG Z W, SONG R J, BI W G, et al. Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion[J]. Carbon, 2007, 45(2):449-458.
|
[51] |
TAKENAKA S, ISHIDA M, SERIZAWA M, et al. Formation of carbon nanofibers and carbon nanotubes through methane decomposition over supported cobalt catalysts[J]. The Journal of Physical Chemistry B, 2004, 108(31):11464-11472.
|
[52] |
YAO D D, ZHANG Y S, WILLIAMS P T, et al. Co-production of hydrogen and carbon nanotubes from real-world waste plastics:Influence of catalyst composition and operational parameters[J]. Applied Catalysis B:Environmental, 2018, 221:584-597.
|
[53] |
EDGAR K, SPENCER J L. The synthesis of carbon nanotubes from Müller clusters[J]. Current Applied Physics, 2006, 6(3):419-421.
|
[54] |
ABOUL-ENEIN A A, AWADALLAH A E. Production of nanostructure carbon materials via non-oxidative thermal degradation of real polypropylene waste plastic using La2O3 supported Ni and Ni-Cu catalysts[J]. Polymer Degradation and Stability, 2019, 167:157-169.
|
[55] |
ACOMB J C, WU C F, WILLIAMS P T. Effect of growth temperature and feedstock:catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113:231-238.
|
[56] |
ABOUL-ENEIN A A, AWADALLAH A E. A novel design for mass production of multi-walled carbon nanotubes using Co-Mo/MgO catalyst via pyrolysis of polypropylene waste:effect of operating conditions[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2018, 26(9):591-605.
|
[57] |
TRIPATHI P K, DURBACH S, COVILLE N J. Synthesis of multi-walled carbon nanotubes from plastic waste using a stainless-steel CVD reactor as catalyst[J]. Nanomaterials, 2017, 7(10):284-301.
|
[58] |
ZHANG Y S, NAHIL M A, WU C F, et al. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products[J]. Environmental Technology, 2017,38(22):2889-2897.
|
[59] |
ACOMB J C, WU C F, WILLIAMS P T. Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes[J]. Applied Catalysis B:Environmental, 2014, 147:571-584.
|
[60] |
ZHANG Y S, WILLIAMS P T. Carbon nanotubes and hydrogen production from the pyrolysis catalysis or catalytic-steam reforming of waste tyres[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122:490-501.
|