Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
JIA Chao, YANG Xiao, LIU Sen, WANG Song-tao, WANG Hui-hui, LIU Jian-zhang. ENVIRONMENTAL IMPACT OF LANDFILL ON GROUNDWATER QUALITY BASED ON INDEX ANALYSIS AND GIS METHOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 156-163,155. doi: 10.13205/j.hjgc.202104024
Citation: LI Zhi-qin, ZHUANG Xu-ning, SONG Xiao-long, LI Fei, LI Ying-shun, GU Wei-hua, BAI Jian-feng. RESEARCH PROGRESS ON RECOVERY OF CATHODE MATERIAL FROM SPENT LITHIUM-ION BATTERIES BY PYROMETALLURGY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 115-122,146. doi: 10.13205/j.hjgc.202104018

RESEARCH PROGRESS ON RECOVERY OF CATHODE MATERIAL FROM SPENT LITHIUM-ION BATTERIES BY PYROMETALLURGY

doi: 10.13205/j.hjgc.202104018
  • Received Date: 2020-04-28
    Available Online: 2021-07-21
  • Due to the existence of valuable and hazardous materials, it is of great practical significance to carry out the recovery and regeneration of spent lithium-ion batteries with environment-friendly ways. With the characteristics of short treatment process, high efficiency and easy industrial application, pyrometallurgy has become the hotspot of spent lithium-ion batteries recycling. It can realize the recycling of valuable metals such as Li, Co and Ni based on the chemical transformation at high temperatures. This paper summarized the application of pyrometallurgy in the cathode material from spent lithium-ion batteries and its research status, including electrode materials dissociation, valuable metals recycling, the positive active material regeneration, etc,. Meanwhile, the advantages and disadvantages of different thermal treatment technology were analyzed and the research direction of the cathode material by pyrometallurgy in the future was also prospected.
  • [1]
    张悦, 何丽杰, 张守庆,等. 废旧锂离子电池的回收技术现状及展望[J]. 电源技术, 2018, 42,335(8):142

    -144.
    [2]
    刘光富,林锦灿,田婷婷.新能源汽车动力电池报废量估算和资源潜力分析[J].中国资源综合利用,2020,38(1):96-99.
    [3]
    王辉,丰成友,张明玉.全球钴矿资源特征及勘察研究进展[J].矿床地质,2019,38(4):739-750.
    [4]
    路长远,鲁雄刚,邹星礼,等.中国镍矿资源现状及技术进展[J].自然杂质,2015,37(4):269-277.
    [5]
    余文刚,毛治超,孙春叶.我国锰矿资源及评价方法综述[J].知识园地,2013(2):22-24.
    [6]
    杨卉芃,柳林,丁国锋.全球锂矿资源现状及发展趋势[J].矿产保护及利用,2019(5):26-40.
    [7]
    郝涛,张英杰,董鹏,等.废旧三元动力锂离子电池正极材料回收的研究进展[J].硅酸盐通报,2018.37(8):2451-2456.
    [8]
    ZENG X L, LI J H, SINGH N. Recycling of spent lithium-ion battery:a critical review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(10):1129-1165.
    [9]
    YANG Y, LEI S Y, SONG S L, et al. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries[J]. Waste Management, 2020, 102:131-138.
    [10]
    SATTAR R, ILYAS S, BHATTI H N, et al. Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries[J]. Separation and Purification Technology, 2019, 209:725-733.
    [11]
    ZHAO J J, ZHANG B L, XIE H W, et al. Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent[J]. Environmental Research, 2020, 181:108803.
    [12]
    MESHRAM P, ABHILASH, PANDEY B. D, et al. Comparision of Different Reductants in Leaching of Spent Lithium Ion Batteries[J]. Jom, 2016, 68(10):2613-2623.
    [13]
    CHEN X P, KANG D Z, LI J Z, et al. Gradient and facile extraction of valuable metals from spent lithium ion batteries for new cathode materials re-fabrication[J]. Journal of Hazardous Materials, 2020,389:121887.
    [14]
    郑莹,凌海,莫文婷,等.废旧镍钴锰酸锂电池正极材料闭环回收[J].环境工程学报,2019,13(5):1157-1164.
    [15]
    陆修远,张贵清,曹佐英,等.采用硫酸-还原剂浸出工艺从废锂离子电池中回收LiNi0.6Mn0.2Co0.2O2[J].稀有金属与硬质合金,2017,45(6):14-23.
    [16]
    陈亮,唐新村,张阳,等.从废锂离子电池中分离回收钴镍锰[J].中国有色金属学报,2011,21(5):1192-1198.
    [17]
    WANG B, LIN X Y, TANG Y Y, et al. Recycling LiCoO2 with methanesulfonic acid for regeneration of lithium-ion battery electrode materials[J]. Journal of Power Sources, 2019, 436:226828.
    [18]
    GUO M M, LI K, LIU L Z, et al. Resource utilization of spent ternary lithium-ions batteries:synthesis of highly active manganese-based perovskite catalyst for toluene oxidation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102:268-275.
    [19]
    ZHANG X X, BIAN Y F, XU S, et al. Innovative application of acid leaching to regenerate Li(Ni1/3Co1/3Mn1/3)O2 cathodes from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5):5959-5968.
    [20]
    GAO W F, SONG J L, CAO H B, et al. Selective recovery of valuable metals from spent lithium-ion batteries-Process development and kinetics evaluation[J]. Journal of Cleaner Production, 2018, 178:833-845.
    [21]
    LI L, BIAN Y F, ZHANG X X, et al. Economical recycling process for spent lithium-ion batteries and macro-and micro-scale mechanistic study[J]. Journal of Power Sources, 2018, 377:70-79.
    [22]
    吴芳.从废旧锂离子二次电池中回收钴和锂[J].中国有色金属学报,2004,14(4):698-701.
    [23]
    ZHANG X X, LI L, FAN E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19):7239-7302.
    [24]
    姚路. 废锂离子电池正极材料回收再利用研究[D].新乡:河南师范大学,2016.
    [25]
    WANG M M, TAN Q Y, LIU L L, et al. Environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15):12799-12806.
    [26]
    WANG M M, TAN Q Y, LIU L L, et al. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9):8287-8294.
    [27]
    苟海鹏,裴忠冶,周国治,等.火法处理废旧三元锂离子电池工艺研究[J].中国有色金属,2019,8(4):79-83.
    [28]
    ZHANG G W, HE Y Q, WANG H F, et al. Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(5):2205-2214.
    [29]
    王芳,张邦胜,刘贵清,等.废旧动力电池资源再生利用技术进展[J].中国资源综合利用,2018,36(10):106-110.
    [30]
    XIAO S W, REN G X, XIE M Q, et al. Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3 slag system[J]. Journal of Sustainable Metallurgy, 2017, 3(4):703-710.
    [31]
    郭学益,田庆华,刘咏,等.有色金属资源循环研究应用进展[J].中国有色金属学报,2019,29(9):1859-1901.
    [32]
    YUE Y, WEI S, ZHANG Y J, et al. Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8):10445-10453.
    [33]
    TANG Y Q, XIE H W, ZHANG B L, et al. Recovery and regeneration of LiCoO2-based spent lithium-ion batteries by a carbothermic reduction vacuum pyrolysis approach:controlling the recovery of CoO or Co[J]. Waste Management, 2019, 97:140-148.
    [34]
    WANG W Q, ZHANG Y C, LIU X G, et al. A simplified process for recovery of Li and Co from spent LiCoO2 cathode using Al foil as the in situ reductant[J]. ACS Sustainable Chemistry & Engineering, 2019.
    [35]
    LIU P C, XIAO L, TANG Y W, et al. Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials[J]. Journal of Thermal Analysis and Calorimetry, 2018, 136(3):1323-1332.
    [36]
    ZHANG Y C, WANG W Q, FANG Q, et al. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching[J]. Waste Management, 2020, 102:847-855.
    [37]
    ZHANG J L, HU J T, ZHANG W J, et al. Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries[J]. Journal of Cleaner Production, 2018, 204:437-446.
    [38]
    WANG W Q, ZHANG Y C, ZHANG L, et al. Cleaner recycling of cathode material by in-situ thermite reduction[J]. Journal of Cleaner Production, 2020, 249:119340.
    [39]
    HUANG Z, ZHU J, QIU R T, et al. A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2019, 229:1148-1157.
    [40]
    ZHAO Y Z, LIU B G, ZHANG L B, et al. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling[J]. Journal of Hazardous Materials, 2020, 384:121487.
    [41]
    FAN E S, LI L, LIN J, et al. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19):16144-16150.
    [42]
    王大辉,李辉辉,姜丽丽,等.酸化焙烧法回收锂电池正极材料过程中元素的迁移规律及赋存状态研究[J].新技术新工艺,2014(12):94-97.
    [43]
    孙建勇.采用硫酸化焙烧-水浸出工艺从LiNi1/3Co1/3Mn1/3O2中回收金属的研究[D].兰州:兰州理工大学,2018.
    [44]
    于曼.循环浸出法高值回收废旧镍钴锰三元材料及其相关精细化学品[D].北京:北京化工大学,2018.
    [45]
    LIN J, LIU C W, CAO H B, et al. Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting[J]. Green Chemistry, 2019, 21(21):5904-5913.
    [46]
    ZHANG X H, XIE Y B, CAO H B, et al. A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries[J]. Waste Management, 2014, 34(9):1715-1724.
    [47]
    楼平,徐国华,岳灵平,等.熔盐法再生修复退役三元动力电池正极材料[J].储能科学与技术,2020,9(3):848-855.
    [48]
    MENG X Q, HAO J, CAO H B, et al. Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering[J]. Waste Management, 2019, 84:54-63.
    [49]
    刘桐,焦芬,钟雪虎,等.废旧锂电池正负极材料修复再生技术[J].电源技术,2019,43(4):699-701.
    [50]
    WANG L H, LI J, ZHOU H M, et al. Regeneration cathode material mixture from spent lithium iron phosphate batteries[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(11):9283-9290.
    [51]
    杨秋菊,赵世超,王楠,等.废旧动力锂离子电池中磷酸铁锂的再生[J].电池,2014,44(1):60-62.
    [52]
    LIANG Q, YUE H F, WANG S F, et al. Recycling and crystal regeneration of commercial used LiFePO4 cathode materials[J]. Electrochimica Acta, 2020:330:135323.
    [53]
    SUN Q F, LI X L, ZHANG H Z, et al. Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route[J]. Journal of Alloys and Compounds, 2020, 818:153292.
  • Relative Articles

    [1]LIU Jinhe, ZHENG Yuna, LIU Peng, LIN Kuangfei, HUANG Kai, ZHOU Changrui. SIMULATION OF POLLUTION CHARACTERISTICS AND MIGRATION LAW OF CADMIUM IN SOIL OF A TYPICAL ELECTRONIC WASTE DISMANTLING AREA IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 150-158. doi: 10.13205/j.hjgc.202408018
    [2]YIN Yalun, HOU Jingming, LI Xinyi, LUAN Guangxue, GAO Xujun, WANG Tian, SHEN Jian, QIAO Mengxi. APPLICATION OF GAST-SWMM COUPLED NUMERICAL MODEL IN LARGE-SCALE URBAN INUNDATION RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 82-90. doi: 10.13205/j.hjgc.202404010
    [3]YANG Yanmei, XIA Tong, ZHANG Yun, AO Liang. SIMULATION ON TRANSPORT OF GROUNDWATER POLLUTANTS AFTER CLOSURE OF A LANDFILL IN CHONGQING BASED ON VISUAL MODFLOW[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 40-47. doi: 10.13205/j.hjgc.202404005
    [4]LIN Huili, JIN Zhaodi, ZHANG Shuli, ZHANG Guangxue, YU Qun, ZHANG Min. NUMERICAL SIMULATION AND EVALUATION OF INDIRECT THERMAL DESORPTION EQUIPMENT FOR PETROLEUM HYDROCARBON CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 261-267. doi: 10.13205/j.hjgc.202403032
    [5]YIN Leyi, HUANG Guoxin, NIU Haobo, CHEN Jian, XIE Yueqing, YANG Lihu, LIU Ling. GROUNDWATER POLLUTION DYNAMIC RISK ASSESSMENT BASED ON NUMERICAL SIMULATION AND RISK SCREENING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 199-205. doi: 10.13205/j.hjgc.202401026
    [6]DU Chuan, LI Houen, CHEN Suyun. APPLICATION OF NUMERICAL SIMULATION TECHNOLOGY IN EXTRACTION AND TREATMENT OF POLLUTED GROUNDWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 102-108. doi: 10.13205/j.hjgc.202307014
    [7]NIU Yi, LI Wei, LI Gongke, WANG Weixing, LI Mingming, CAO Shuping, LÜ Xiaowen. SIMULATION OF RESTORATION OF GROUNDWATER POLLUTION IN A LANDFILL IN COASTAL PLAIN AREA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 12-20. doi: 10.13205/j.hjgc.202303002
    [8]LI Qiuhua, WANG Qunhui. ADVANCED TREATMENT OF SOLID WASTE LANDFILL LEACHATE BY A COMBINED PROCESS OF Fe/C MICROELECTROLYSIS-FENTON OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 18-23. doi: 10.13205/j.hjgc.202203004
    [9]CHANG Weicen, LI Yumeng, ZHONG Qiumeng, LIANG Sai. HIGH SPATIAL RESOLUTION ENVIRONMENTAL DATASET AND ITS APPLICATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 1-11. doi: 10.13205/j.hjgc.202206001
    [10]LUO Wei, LI Pinyi, PENG Hui, YE Yong. NUMERICAL STUDY ON EFFECT OF STRIP MAGNET GEOMETRIC CONFIGURATION ON SEPARATION BEHAVIORS OF MAGNETIC PARTICLES IN LAMINAR FLOW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 32-40. doi: 10.13205/j.hjgc.202211005
    [11]HUANG Yanpeng, WANG Yuanhao, WANG Chao, LIU Weijiang, WANG Hong, LV Guangfeng, LIN Sijie, HU Qing. CHARACTERISTICS ANALYSIS AND ZONING CONTROL OF GROUNDWATER POLLUTION BASED ON SELF-ORGANIZING MAPS AND K-MEANS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 31-41,47. doi: 10.13205/j.hjgc.202206004
    [12]LI Debo, CHEN Zhaoli, CHEN Zhihao, FENG Yongxin, HUANG Zigan, WEI Chen, MA Xiaoqian. NUMERICAL SIMULATION OF MIXED FIRING OF AGED REFUSE AND AIR DISTRIBUTION OPTIMIZATION IN A MSW INCINERATION FURNACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 113-119. doi: 10.13205/j.hjgc.202211016
    [13]ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029
    [14]ZHAO Yan, GUO Jia-lin, SHI Yang, WU Zhi-qi, JIANG Bin-hui. A GROUNDWATER INFLOW PREDICTION METHOD FOR FUSHUN WEST OPEN-PIT MINE BASED ON GMS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 75-79,129. doi: 10.13205/j.hjgc.202101011
    [15]LU Guang-hua, LIU Chang-bo, XIA Chun, YUE Chang-sheng, LIU Shi-cheng, WU Jie. APPLICATION OF MONITORING TECHNOLOGY FOR CONTAMINATED GROUNDWATER IN AN INFORMAL LANDFILL SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 180-186. doi: 10.13205/j.hjgc.202104027
    [16]HAN Xiao-dong, SUN Ye. SITE SELECTION OF WASTE TRANSFER STATION BASED ON NUMERICAL SIMULATIONS OF ODOR DISPERSION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 130-135. doi: 10.13205/j.hjgc.202103018
    [17]QI Er-bing, HUANG Ya-ji, YUAN Qi, HU Hua-jun, FAN Cong-hui, CAO Yan-yan, DING Shou-yi. LIME COAGULATION-SUBMERGED EVAPORATION SYNERGISTIC TREATMENT FOR NANOFILTRATION MEMBRANE CONCENTRATE OF LANDFILL LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 54-58,77. doi: 10.13205/j.hjgc.202012010
    [18]XU Xin-yu, LI Wei-min, YE Jiang-yu. TREATMENT OF LANDFILL LEACHATE BY PHOTOSYNTHETIC BACTERIA IN SBR SYSTEM AND ANALYSIS ON BIOLOGICAL COMMUNITY STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 99-104. doi: 10.13205/j.hjgc.202001015
    [19]ZHAO Kun, LI Ruo-hua, CHENG Wen-long, YANG Yuan-ping, YUE Shu-bo. NUMERICAL SIMULATION STUDY ON ENVIRONMENTAL IMPACT OF SEWAGE DISCHARGE ON ESTUARY WATER FUNCTIONAL AREA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 33-40. doi: 10.13205/j.hjgc.202010006
    [20]Wang Huitao Wu Yong Ke Bin Wu Weijie Cui Zhijun, . PRETREATMENT OF LANDFILL LEACHATES BY MICRO-ELECTROLYSIS INTEGRATED EQUIPMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 16-20. doi: 10.13205/j.hjgc.201502004
  • Cited by

    Periodical cited type(10)

    1. 刘子平. 河南某垃圾填埋场地下水环境污染调查预测研究. 黑龙江环境通报. 2024(05): 39-41 .
    2. 袁增,冯小波,杨江海,王珏,裴逸智,郭劲松,高俊敏. 川东地区天然气场站固化池渗滤液污染特征及其对地下水影响研究. 环境科学学报. 2024(05): 264-272 .
    3. 凌波,帅焕,陈婉君,孙杨艳,张海忠,欧阳琦. 地下水阻隔墙对湖南某生活垃圾填埋场地下水污染源头减量的模拟研究. 矿产与地质. 2024(06): 1109-1119 .
    4. 张霞,杨永森,杨渤京,范德强,朱性宝,娄满君,王海东,王一冰. 基于GIS和EVS方法的退役化肥企业场地开发前环境调查与污染特征分析. 环境与发展. 2023(01): 83-89+95 .
    5. 牛毅,李炜,李攻科,王卫星,李明明,曹淑萍,吕潇文. 滨海平原区某生活垃圾填埋场地下水污染修复模拟. 环境工程. 2023(03): 12-20 . 本站查看
    6. 宋方玉,陈婷婷,马崇迪. GIS技术在环境影响评价中的应用. 皮革制作与环保科技. 2023(11): 57-59 .
    7. 申二宁. 基于因子分析—模糊综合法的地下水环境影响数值模拟分析. 环境保护与循环经济. 2023(09): 16-19+61 .
    8. 游洋洋,梁增强,霍宁. 基于改进的水质标识指数法垃圾填埋场地下水评价. 环境工程. 2023(12): 264-269+311 . 本站查看
    9. 吉栋梁,张鲁玉,黄兆琴,杜布云,徐亚,杨枫. 海滨危废填埋场与水源缓冲距离要求及调控. 环境科学研究. 2022(06): 1499-1508 .
    10. 赵坤. 垂直防渗在地下水污染防控中的应用. 皮革制作与环保科技. 2022(23): 109-111 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.5 %FULLTEXT: 19.5 %META: 80.5 %META: 80.5 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.0 %其他: 10.0 %其他: 0.9 %其他: 0.9 %China: 1.6 %China: 1.6 %[]: 2.2 %[]: 2.2 %上海: 2.7 %上海: 2.7 %东莞: 1.3 %东莞: 1.3 %临汾: 0.2 %临汾: 0.2 %信阳: 0.2 %信阳: 0.2 %兰州: 0.4 %兰州: 0.4 %凉山: 0.2 %凉山: 0.2 %北京: 3.3 %北京: 3.3 %南京: 0.7 %南京: 0.7 %南宁: 0.2 %南宁: 0.2 %南通: 0.7 %南通: 0.7 %台州: 0.9 %台州: 0.9 %周口: 0.2 %周口: 0.2 %天津: 2.4 %天津: 2.4 %太原: 0.7 %太原: 0.7 %安康: 0.2 %安康: 0.2 %常德: 0.2 %常德: 0.2 %广州: 1.8 %广州: 1.8 %廊坊: 0.2 %廊坊: 0.2 %张家口: 0.2 %张家口: 0.2 %成都: 0.4 %成都: 0.4 %昆明: 0.4 %昆明: 0.4 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.2 %杭州: 0.2 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 1.3 %武汉: 1.3 %济南: 0.2 %济南: 0.2 %济源: 0.2 %济源: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 0.9 %湖州: 0.9 %漯河: 0.9 %漯河: 0.9 %濮阳: 0.4 %濮阳: 0.4 %石嘴山: 0.2 %石嘴山: 0.2 %福州: 0.4 %福州: 0.4 %芒廷维尤: 41.8 %芒廷维尤: 41.8 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %衡水: 0.2 %衡水: 0.2 %衢州: 0.9 %衢州: 0.9 %西宁: 7.8 %西宁: 7.8 %西安: 0.2 %西安: 0.2 %许昌: 0.4 %许昌: 0.4 %贵阳: 0.7 %贵阳: 0.7 %赣州: 0.2 %赣州: 0.2 %运城: 2.2 %运城: 2.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.8 %郑州: 1.8 %重庆: 0.7 %重庆: 0.7 %铁岭: 0.4 %铁岭: 0.4 %银川: 0.2 %银川: 0.2 %长沙: 0.4 %长沙: 0.4 %长治: 0.2 %长治: 0.2 %阜阳: 0.4 %阜阳: 0.4 %雅安: 0.2 %雅安: 0.2 %青岛: 1.1 %青岛: 1.1 %其他其他China[]上海东莞临汾信阳兰州凉山北京南京南宁南通台州周口天津太原安康常德广州廊坊张家口成都昆明晋城朝阳杭州格兰特县武汉济南济源深圳温州湖州漯河濮阳石嘴山福州芒廷维尤芝加哥苏州衡水衢州西宁西安许昌贵阳赣州运城遵义邯郸郑州重庆铁岭银川长沙长治阜阳雅安青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (623) PDF downloads(21) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return