YANG Tao, LIU Peng-yu, XU Ya-qiang, CHEN Dai-jie, JING Mei-ying, CHU Xiao-he. PILOT STUDY ON TREATMENT OF ACARBOSE RESIDUE BY A MULTI-STAGE ANAEROBIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 123-127. doi: 10.13205/j.hjgc.202104019
Citation:
YANG Tao, LIU Peng-yu, XU Ya-qiang, CHEN Dai-jie, JING Mei-ying, CHU Xiao-he. PILOT STUDY ON TREATMENT OF ACARBOSE RESIDUE BY A MULTI-STAGE ANAEROBIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 123-127. doi: 10.13205/j.hjgc.202104019
YANG Tao, LIU Peng-yu, XU Ya-qiang, CHEN Dai-jie, JING Mei-ying, CHU Xiao-he. PILOT STUDY ON TREATMENT OF ACARBOSE RESIDUE BY A MULTI-STAGE ANAEROBIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 123-127. doi: 10.13205/j.hjgc.202104019
Citation:
YANG Tao, LIU Peng-yu, XU Ya-qiang, CHEN Dai-jie, JING Mei-ying, CHU Xiao-he. PILOT STUDY ON TREATMENT OF ACARBOSE RESIDUE BY A MULTI-STAGE ANAEROBIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 123-127. doi: 10.13205/j.hjgc.202104019
Acarbose produced a large amount of fermentation waste in the production process. At present, the incineration method is generally expensive, therefore an environmentally friendly and inexpensive treatment method is urgently needed for this treatment. In this paper, the acarbose slag was treated by a multi-stage anaerobic system. When the feed load reached 4.173 kg (by dry residue)/(m3·d), the average total gas production of multistage anaerobic system was 390.4 m3/d. The average soluble COD of the effluent was 8946 mg/L, the system could completely degrade the residual mycelium in the waste residue, the solid mass removal rate of the waste residue was 52.9%, the residual acarbose in the waste residue decreased from 0.361 mg/g (dry residue) to 0.027 mg/g (dry residue), and the drug residue removal rate was 92.5%. The humification degree of anaerobic effluent was greatly improved, and the reduction and harmless treatment of acarbose residue were realized.
DOLLIVER H, GUPTA S, NOLL S. Antibiotic degradation during manure composting[J]. Journal of Environment Quality, 2008, 37(3):1245-1253.
[8]
ZBYTNIEWSKI, BUSZEWSKI R. Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1:chemical and spectroscopic properties[J]. Bioresource Technology, 2005, 96(4):471-478.