Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YANG Zi-jian, LIU Yang-sheng. RESEARCH PROGRESS ON TREATMENT AND DISPOSAL OF WATER-BASED DRILLING SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 143-149. doi: 10.13205/j.hjgc.202110020
Citation: WU Fan, NIU Dong-jie. REVIEW ON PREDICTIVE MODELS FOR MUNICIPAL SOLID WASTE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 128-133. doi: 10.13205/j.hjgc.202104020

REVIEW ON PREDICTIVE MODELS FOR MUNICIPAL SOLID WASTE PRODUCTION

doi: 10.13205/j.hjgc.202104020
  • Received Date: 2020-04-26
    Available Online: 2021-07-21
  • Prediction of generation rate of MSW is of great significance to its planning and subsequent disposal. Models in previous research were summarized into two categories:regression analysis models for large-scale prediction and time series models for small-scale but precise prediction. And each sub-category was compared in detail. The influencing factors of MSW were divided into three categories:regional overall factors, residents' living factors and other factors, and their selection was discussed separately. Finally, suggestions on three major steps, determination of land scale, lag of time and input parameters were given, and the existing problems in predictive models for municipal solid waste were also summarized.
  • [1]
    张海龙, 李祥平, 齐剑英, 等. 华南某市生活垃圾组成特征分析[J]. 环境科学, 2015, 36(1):325-332.
    [2]
    徐盼, 郑有飞, 吴荣军, 等. 我国城市生活垃圾的产生和处理现状分析[J]. 环境卫生工程, 2013, 21(6):13-15.
    [3]
    DUAN N, LI D, WANG P, et al. Comparative study of municipal solid waste disposal in three Chinese representative cities[J]. Journal of Cleaner Production, 2020, 254:120134.
    [4]
    KUMAR J S, SUBBAIAH K V, RAO P V V P. Prediction of municipal solid waste with RBF net work:a case study of Eluru, A. P, India[J]. International Journal of Innovation, Management and Technology, 2011, 2(3):238-243.
    [5]
    HANNAN M A, ABDULLA AL MAMUN M, Hussain A, et al. A review on technologies and their usage in solid waste monitoring and management systems:issues and challenges[J]. Waste Management, 2015, 43:509-523.
    [6]
    KORAI M S, MAHAR R B, UQAILI M A. The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan[J]. Renewable and Sustainable Energy Reviews, 2017, 72:338-353.
    [7]
    FU H Z, LI Z S, WANG R H. Estimating municipal solid waste generation by different activities and various resident groups in five provinces of China[J]. Waste Management, 2015, 41:3-11.
    [8]
    BEIGL P, LEBERSORGER S, SALHOFER S. Modelling municipal solid waste generation:a review[J]. Waste Management, 2008, 28(1):200-214.
    [9]
    KOLEKAR K A, HAZRA T, CHAKRABARTY S N. A review on prediction of municipal solid waste generation models[J]. Procedia Environmental Sciences, 2016, 35:238-244.
    [10]
    GHINEA C, DRAGOI E N, COMANITA E D, et al. Forecasting municipal solid waste generation using prognostic tools and regression analysis[J]. Journal of Environmental Management, 2016, 182:80-93.
    [11]
    李海红, 巩雪松, 同帜. 多元线性回归预测模型在农村生活垃圾产量预测中的应用[J]. 西南农业学报, 2010, 23(4):1324-1328.
    [12]
    AZADI S, KARIMI-JASHNI A. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate:a case study of Fars province, Iran[J]. Waste Management, 2016, 48:14-23.
    [13]
    ABDOLI M A, NEZHAD M F, SEDE R S, et al. Longterm forecasting of solid waste generation by the artificial neural networks[J]. Environmental Progress & Sustainable Energy, 2012, 31(4):628-636.
    [14]
    RIMAITYTE I, RUZGAS T, DENAFAS G, et al. Application and evaluation of forecasting methods for municipal solid waste generation in an Eastern-European city[J]. Waste Management Research, 2012, 30(1):89-98.
    [15]
    YANG Y, ZHANG J. A prediction on electronic waste resource with time series model[C]//2010 International Conference on Computer Application and System Modeling, 2010.
    [16]
    NAVARRO-ESBRI J, DIAMADOPOULOS E, GINESTAR D. Time series analysis and forecasting techniques for municipal solid waste management[J]. Resources, Conservation and Recycling, 2002, 35:201-214.
    [17]
    MARANDI F, FATEMI GHOMI S M T. Time series forecasting and analysis of municipal solid waste generation in Tehran city[C]//12th International Conference on Industrial Engineering, 2016.
    [18]
    HIMAN S, SAEED K, BAHARIN Bin A, et al. Application of artificial neural network in prediction of municipal solid waste generation[J]. World Applied Sciences Journal, 2012, 20:336-343.
    [19]
    NOORI R, KARBASSI A, SALMAN Sabahi M. Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction[J]. Journal of Environmental Management, 2010, 91(3):767-71.
    [20]
    KANNANGARA M, DUA R, AHMADI L, et al. Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches[J]. Waste Management, 2018, 74:3-15.
    [21]
    VU H L, NG K T W, BOLINGBROKE D. Time-lagged effects of weekly climatic and socio-economic factors on ANN municipal yard waste prediction models[J]. Waste Management, 2019, 84:129-140.
    [22]
    舒莹. 基于灰色预测模型的合肥市城市生活垃圾产量预测[J]. 环境科学与管理, 2007, 32(9):5-8.
    [23]
    李银, 吴振家, 位瑞英. 基于灰色Verhulst模型预测韶关市生活垃圾产量[J]. 韶关学院学报, 2016,37(6):1-5.
    [24]
    INTHARATHIRAT R, ABDUL Salam P, KUMAR S, et al. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models[J]. Waste Management, 2015, 39:3-14.
    [25]
    WEI Y, XUE Y, YIN J, et al. Prediction of municipal solid waste generation in china by multiple linear regression method[J]. International Journal of Computers and Applications, 2013, 35(3):13-22.
    [26]
    JALILI GHAZI M, NOORI R. Prediction of municipal solid waste generation by use of artificial neural network a case study of mashhad[J]. International Journal of Environmental Research, 2007, 2(1):13-22.
    [27]
    ABIDOYE L K, MAHDI F M, IDRIS M O, et al. ANN-derived equation and ITS application in the prediction of dielectric properties of pure and impure CO2[J]. Journal of Cleaner Production, 2018, 175:123-132.
    [28]
    MA J, DING Y, CHENG J C P, et al. A temporal-spatial interpolation and extrapolation method based on geographic Long Short-Term Memory neural network for PM2.5[J]. Journal of Cleaner Production, 2019, 237:1-11.
    [29]
    ANTANASIJEVIĆ D, POCAJT V, POPOVIĆ I, et al. The forecasting of municipal waste generation using artificial neural networks and sustainability indicators[J]. Sustainability Science, 2012, 8(1):37-46.
    [30]
    ABBASI M, El HANANDEH A. Forecasting municipal solid waste generation using artificial intelligence modelling approaches[J]. Waste Management, 2016, 56:13-22.
    [31]
    YOUNES M K, NOPIAH Z M, BASRI N E, et al. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model[J]. Waste Management, 2016, 55:3-11.
    [32]
    张旺. 基于Elman神经网络的城市生活垃圾清运量预测模型研究[D]. 武汉:湖北工业大学, 2017.
    [33]
    郭华, 李佳美, 邱明杰, 等. 我国生活垃圾产量的多元线性回归预测分析[J]. 环境与发展, 2018(1):61-63.
    [34]
    秦绪佳, 彭洁, 徐菲, 等. 基于RBF网络的城市垃圾产量预测及可视化[J]. 中国环境科学, 2018, 38(2):792-800.
    [35]
    CHEN H W, CHANG N B. Prediction analysis of solid waste generation based on grey fuzzy dynamic modeling[J]. Resources, Conservation and Recycling, 2000, 29:1-18.
    [36]
    ORIBE-GARCIA I, KAMARA-ESTEBAN O, MARTIN C, et al. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay[J]. Waste Management, 2015, 39:26-34.
    [37]
    WU F, NIU D J, DAI S J, et al. New insights into regional differences of the predictions of municipal solid waste generation rates using artificial neural networks[J]. Waste Management, 2020, 107:182-190.
    [38]
    MONAVARI S M, OMRANI G A, KARBASSI A, et al. The effects of socioeconomic parameters on household solid-waste generation and composition in developing countries (a case study:Ahvaz, Iran)[J]. Environmental Monitoring and Assessment, 2012, 184(4):1841-1846.
    [39]
    BANDARA N J, HETTIARATCHI J P, WIRASINGHE S C, et al. Relation of waste generation and composition to socio-economic factors:a case study[J]. Environmental Monitoring and Assessment, 2007, 135(1/2/3):31-39.
    [40]
    AGUILAR-VIRGEN Q, TABOADA-GONZALEZ P, OJEDA-BENITEZ S. Seasonal analysis of the generation and composition of solid waste:potential use:a case study[J]. Environmental Monitoring Assessment, 2013, 185(6):4633-4645.
    [41]
    EDJABOU M E, JENSEN M B, GOTZE R, et al. Municipal solid waste composition:sampling methodology, statistical analyses, and case study evaluation[J]. Waste Management, 2015, 36:12-23.
    [42]
    DENAFAS G, RUZGAS T, MARTUZEVI AČG1 IUS D, et al. Seasonal variation of municipal solid waste generation and composition in four East European cities[J]. Resources, Conservation and Recycling, 2014, 89:22-30.
    [43]
    GIDARAKOS E, HAVAS G, NTZAMILIS P. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete[J]. Waste Management, 2006, 26(6):668-679.
    [44]
    NOORI R, ABDOLI M A, FAROKHNIA A, et al. Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform-neural network[J]. Expert Systems with Applications, 2009, 36(6):9991-9999.
    [45]
    SOTAMENOU J, DE JAEGER S, ROUSSEAU S. Drivers of legal and illegal solid waste disposal in the Global South:the case of households in Yaounde (Cameroon)[J]. Journal of Environmental Management, 2019, 240:321-330.
    [46]
    OJEDA-BENÍTEZ S, VEGA C A-D, MARQUEZ-MONTENEGRO M Y. Household solid waste characterization by family socioeconomic profile as unit of analysis[J]. Resources, Conservation and Recycling, 2008, 52(7):992-999.
    [47]
    KUMAR A, SAMADDER S R. An empirical model for prediction of household solid waste generation rate:a case study of Dhanbad, India[J]. Waste Management, 2017, 68:3-15.
    [48]
    NOORI R, KARBASSI A, MEHDIZADEH H, et al. A framework development for predicting the longitudinal dispersion coefficient in natural streams using an artificial neural network[J]. Environmental Progress & Sustainable Energy, 2011, 30(3):439-449.
    [49]
    POURREZA MOVAHED Z, KABIRI M, RANJBAR S, et al. Multi-objective optimization of life cycle assessment of integrated waste management based on genetic algorithms:a case study of Tehran[J]. Journal of Cleaner Production, 2020, 247:1-12.
    [50]
    NOORI R, ABDOLI M, JALILI GHAZIZADE M, et al. Comparison of ANN and PCA based multivariate linear regression applied to predict the weekly municipal solid waste generation in Tehran[J]. Iranian Journal of Public Health, 2009, 38(1):74-84.
  • Relative Articles

    [1]LU Fanghai, CHAI Hongyun, HE Haijun, WEI Zhuangqiang, SHU Ya, CHEN Xiaohu, LONG Xianze. RESOURCE REUTILIZATION FOR PHOSPHOGYPSUM AND RED MUD THOUGH CO-TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 156-163. doi: 10.13205/j.hjgc.202403019
    [2]LIU Junwu, CAI Jingju, FANG Yingchun, CAO Jingxiao, ZHU Jian, WANG Ping, JIANG Xiaxin, ZHU Shanshan, ZHANG Jinjin. SYNCHRONOUS REMOVAL OF MOISTURE AND ORGANIC POLLUTANTS IN DREDGING SEDIMENT BY ELECTRO-FENTON[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 76-81,108. doi: 10.13205/j.hjgc.202306011
    [3]WANG Xinlong, SUN Pinghe, ZHAO Mingzhe, XING Shikuan, FENG Deshan, TANG Lei. INFLUENCE OF DIFFERENT CONSOLIDATION FACTORS ON MOISTURE CONTENT AND PERMEABILITY OF WASTE SLURRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 84-89. doi: 10.13205/j.hjgc.202208011
    [4]GUO Li-heng, GUAN Xiao-hong, LIU Hui-ling, DAI Xiao-hu. RESEARCH PROGRESS ON HARMLESS AND RESOURCE UTILIZATION OF FERMENTATION RESIDUE OF STEROIDAL DRUGS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 244-250. doi: 10.13205/j.hjgc.202205034
    [5]XIN Wen-cai, CHEN Meng, CHEN Yi-lin, CHEN Shi, FU Wei-liang, ZHANG Cheng-zhen, ZHANG Xu-kun. RESEARCH PROGRESS OF DRYING AND REDUCTION EQUIPMENT FOR HIGH-HUMIDITY AND HIGH-VISCOSITY SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 178-182. doi: 10.13205/j.hjgc.202103025
    [6]XIANG Hong-lin, JIANG Jian-guo, GAO Yu-chen, MENG Yuan, XU Yi-wen, AIKELAIMU Aihemaiti, JU Tong-yao, HAN Si-yu, GUO Yan-ran. EFFECT OF AIR-FLOW RATE ON BIO-DRYING OF ORGANIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 128-134. doi: 10.13205/j.hjgc.202002017
  • Cited by

    Periodical cited type(19)

    1. 杨延梅,徐鸿飞,侯蒙蒙,杨金忠,黄启飞,杨玉飞. 西北地区水基岩屑污染特征及其铺垫道路环境风险评估. 环境污染与防治. 2025(02): 82-87 .
    2. 常利娜,沈川. 基于中国知网文献计量视角下固体废弃物的研究热点与发展趋势分析. 环境生态学. 2025(02): 139-147+158 .
    3. 孙峰,夏嵩,李惠,刘斯琪,徐炳科,谢倩雯,史春艳. 水基钻井岩屑样品快速消解测定六种重金属元素. 油气田环境保护. 2025(01): 39-44 .
    4. 李金雨,王新刚,亓秋燕,王宗金,奚家米,艾子涵,李彦君,王昊宇,辜超颖. 钻井法泥浆用于陕北榆林地区矿山生态修复资源化利用试验研究. 西北地质. 2025(02): 197-208 .
    5. 王兵,孙越,商佳俭,陶建,李爽,任宏洋. BAP/O_3复合氧化体系对SMP的降解性能. 环境工程学报. 2024(02): 335-342 .
    6. 曹智鹏,田相友,于丙鑫,马蒸钊,谢江浩. 海上废弃钻井岩屑淋洗污染实验研究. 当代化工. 2024(02): 372-375+380 .
    7. 周晓娟. 固体废物对土壤环境的污染分析与无害化处理技术研究. 环境科学与管理. 2024(04): 81-85 .
    8. 何焱,何鑫,唐庆,杨嵌,李世伟,余世杰. 水基钻井岩屑细集料取代率对水泥混凝土性能影响研究. 四川建筑科学研究. 2024(04): 56-62 .
    9. 张建甲,单通,宁阳,程超. 油气田钻井固(危)废处置与利用综合解决方案探讨. 资源节约与环保. 2024(07): 123-126+144 .
    10. 王菲,赵彤,杨金忠,刘宏博,杨玉飞. 聚磺岩屑和还原土中钡的毒性物质含量鉴别方法研究. 环境工程技术学报. 2024(06): 1969-1976+1945 .
    11. 周奇,姚光远,包为磊,孙英杰,黄启飞. 油气田开采钻井岩屑分类利用处置现状及环境管理. 环境工程技术学报. 2023(02): 785-792 .
    12. 孙显根,李碧峰,韩桂成. 节能环保下农村固体废弃物污染防治技术研究. 环境科学与管理. 2023(03): 55-60 .
    13. 湛峰,程全,刘慧敏,宋光明,诸林,孙勇,赵志越. 废弃水基钻井泥浆的固液分离研究——以四川蓬深X井为例. 天然气与石油. 2023(03): 95-102 .
    14. 唐雷,何瑜瑞,孙平贺,宋建恒,侯凯,胡凌云,黄兴海,冯德山. 基础工程废弃泥浆环境化学效应的实验研究. 环境工程. 2023(S2): 533-537 . 本站查看
    15. 李凤娟,张存社,李小龙,孙培,邵国彪. 废弃水基泥浆处理技术研究进展. 精细与专用化学品. 2023(11): 26-28 .
    16. 徐贵勤,谢水祥,任雯,张明栋,潘莉芳,刘国宇,岳长涛,李松辉. 废弃聚磺钻井液固相资源化绿色处理剂. 石油钻采工艺. 2023(06): 683-689 .
    17. 张景红,王志民. 渤海地区海上平台钻采固废管理现状及建议. 资源节约与环保. 2022(08): 81-83 .
    18. 王心龙,孙平贺,赵明哲,邢世宽,冯德山,唐雷. 不同固结因素对废弃泥浆含水率及渗透性的影响. 环境工程. 2022(08): 84-89 . 本站查看
    19. 刘莉,李诗雨,陆朝晖,田君竹,李昊宸. 页岩气油基岩屑处置及资源化利用方案比选. 中国矿业. 2022(10): 62-67 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.3 %FULLTEXT: 12.3 %META: 85.7 %META: 85.7 %PDF: 1.9 %PDF: 1.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %其他: 0.1 %其他: 0.1 %[]: 0.1 %[]: 0.1 %上海: 1.8 %上海: 1.8 %东莞: 1.9 %东莞: 1.9 %临汾: 0.1 %临汾: 0.1 %乌鲁木齐: 1.0 %乌鲁木齐: 1.0 %乐山: 0.1 %乐山: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.4 %保定: 0.4 %六安: 0.4 %六安: 0.4 %内江: 0.7 %内江: 0.7 %北京: 4.4 %北京: 4.4 %南京: 0.7 %南京: 0.7 %南充: 1.9 %南充: 1.9 %南宁: 0.1 %南宁: 0.1 %吕梁: 0.4 %吕梁: 0.4 %呼和浩特: 1.4 %呼和浩特: 1.4 %咸阳: 0.7 %咸阳: 0.7 %哈尔滨: 0.3 %哈尔滨: 0.3 %塔城: 0.4 %塔城: 0.4 %大庆: 0.3 %大庆: 0.3 %大连: 0.1 %大连: 0.1 %天津: 3.6 %天津: 3.6 %太原: 0.1 %太原: 0.1 %威海: 0.4 %威海: 0.4 %宝鸡: 0.1 %宝鸡: 0.1 %巴彦淖尔: 0.1 %巴彦淖尔: 0.1 %巴音郭楞: 0.6 %巴音郭楞: 0.6 %常州: 1.2 %常州: 1.2 %常德: 0.1 %常德: 0.1 %广安: 0.1 %广安: 0.1 %庆阳: 0.1 %庆阳: 0.1 %张家口: 1.9 %张家口: 1.9 %惠州: 0.7 %惠州: 0.7 %成都: 6.8 %成都: 6.8 %承德: 0.1 %承德: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 1.9 %昆明: 1.9 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.7 %杭州: 1.7 %株洲: 0.1 %株洲: 0.1 %榆林: 0.4 %榆林: 0.4 %武汉: 0.6 %武汉: 0.6 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.7 %沈阳: 0.7 %济南: 0.1 %济南: 0.1 %济源: 0.3 %济源: 0.3 %深圳: 0.6 %深圳: 0.6 %温州: 0.3 %温州: 0.3 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 1.0 %漯河: 1.0 %潜江: 0.1 %潜江: 0.1 %濮阳: 0.3 %濮阳: 0.3 %烟台: 0.3 %烟台: 0.3 %盘锦: 0.1 %盘锦: 0.1 %石家庄: 1.1 %石家庄: 1.1 %纽约: 0.1 %纽约: 0.1 %绵阳: 1.1 %绵阳: 1.1 %芒廷维尤: 25.9 %芒廷维尤: 25.9 %芝加哥: 3.2 %芝加哥: 3.2 %苏州: 0.4 %苏州: 0.4 %荆州: 0.3 %荆州: 0.3 %西宁: 1.2 %西宁: 1.2 %西安: 3.9 %西安: 3.9 %西雅图: 1.0 %西雅图: 1.0 %贵阳: 0.1 %贵阳: 0.1 %运城: 1.8 %运城: 1.8 %遂宁: 0.7 %遂宁: 0.7 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.6 %郑州: 0.6 %鄂州: 0.3 %鄂州: 0.3 %重庆: 3.3 %重庆: 3.3 %铜川: 0.1 %铜川: 0.1 %银川: 0.1 %银川: 0.1 %长沙: 1.0 %长沙: 1.0 %长治: 0.1 %长治: 0.1 %阿克苏: 0.1 %阿克苏: 0.1 %雷德蒙德: 0.1 %雷德蒙德: 0.1 %青岛: 0.8 %青岛: 0.8 %黄山: 0.1 %黄山: 0.1 %其他其他[]上海东莞临汾乌鲁木齐乐山佛山保定六安内江北京南京南充南宁吕梁呼和浩特咸阳哈尔滨塔城大庆大连天津太原威海宝鸡巴彦淖尔巴音郭楞常州常德广安庆阳张家口惠州成都承德无锡昆明晋城朝阳杭州株洲榆林武汉汕头沈阳济南济源深圳温州湖州湘潭漯河潜江濮阳烟台盘锦石家庄纽约绵阳芒廷维尤芝加哥苏州荆州西宁西安西雅图贵阳运城遂宁遵义邯郸郑州鄂州重庆铜川银川长沙长治阿克苏雷德蒙德青岛黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (512) PDF downloads(43) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return