Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WEN Hao, YAN Yuting, ZHONG Jiewen, ZHANG Haowen, YIN Hongwei, TIAN Siyu. EFFECT OF BUOY-BEAD MATERIAL ON CHLORELLA VULGARIS HARVESTING PERFORMANCE DURING FLOTATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 26-31. doi: 10.13205/j.hjgc.202211004
Citation: ZHANG Bo, ZHAO Yi-hua, TAO Jun, JI Min, MA Tong-yu, SHANG Chen. INFLUENCE MECHANISM AND KINETIC STUDY OF CaO PRETREATMENT ON HIGH-SOLID SLUDGE ANAEROBIC DIGESTION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 140-146. doi: 10.13205/j.hjgc.202104022

INFLUENCE MECHANISM AND KINETIC STUDY OF CaO PRETREATMENT ON HIGH-SOLID SLUDGE ANAEROBIC DIGESTION PERFORMANCE

doi: 10.13205/j.hjgc.202104022
  • Received Date: 2020-04-29
    Available Online: 2021-07-21
  • To resolve the problem of low hydrolysis rate of high-solid waste activated sludge during anaerobic digestion process, CaO was used to disintegrate high-solid sludge. Physical and chemical characters of sludge before and after alkaline pretreatment were evaluated in terms of particle size, and soluble COD, protein, carbohydrate. Effect of alkaline pretreatment on cumulative methane yield and organism decomposition during high-solid anaerobic digestion process were also studied. The influence mechanism of EPS, cell wall and cell membrane cracking degree on anaerobic digestion performance under different alkali levels were studied. The results indicated that after the CaO pretreatment, the particle size of sludge was hardly changed, and the concentrations of SCOD, soluble protein and carbohydrate showed an obvious increase trend. The disintegration degree increased with the dosage of CaO. After alkaline pretreatment, the cumulative methane yield increased by 22.9%~34.8%. The mechanism discussion results showed that only organic matters in EPS could be released during low-alkali pretreatment, which promoted the cumulative methane yield, while organic matters in EPS and intracellular polymers were both released during high-alkali pretreatment, which led to the increase of cumulative methane yield. Kinetics study results showed that alkaline pretreatment could not only enhance methane yield, but also accelerate the anaerobic digestion and shorten the inhibitory stage.
  • [1]
    ZHANG B, JI M, WANG F, et al. Damage of EPS and cell structures and improvement of high-solid anaerobic digestion of sewage sludge by combined (Ca(OH)2+ multiple:transducer ultrasonic) pretreatment[J]. RSC Advances 2017, 37(7):22706-22714.
    [2]
    晏发春,汪恂,张雷. 高温热水解预处理厌氧消化技术实例分析[J]. 中国给水排水,2016,32(18):35-37.
    [3]
    LIAO X C, LI H, ZHANG Y Y, et al. Accelerated High-Solids Anaerobic Digestion of Sewage Sludge Using Low-Temperature Thermal Pretreatment[J]. International Biodeterioration & Biodegradation, 2016, 106:141-149.
    [4]
    王广启,吴静,左剑恶等. 城市污泥高固体浓度厌氧消化的研究进展[J].中国沼气,2013,31(6):9-12.
    [5]
    刘峰林,左剑恶,林甲等. 高含固率污泥预处理方法及其在污泥厌氧消化中的作用[J].中国沼气,2012,30(6):3-6.
    [6]
    ŞCAHINKAYA S, SEVIMLI M F. Synergistic effects of sono-alkaline pretreatment on anaerobic biodegradability of waste activated sludge[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(1):197-206.
    [7]
    TIAN X B, WANG C, TRZCINSKI A P, et al. Insights on the solubilization products after combined alkaline and ultrasonic pre-treatment of sewage sludge[J]. Journal of Environmental Sciences-China, 2015, 29(3):97-105.
    [8]
    王平. 热水解厌氧消化工艺的分析和应用探讨[J]. 给水排水,2015,(1):33-38.
    [9]
    PILLI S, YAN S, TYAGI R D, et al. Anaerobic digestion of ultrasonicated sludge at different solids concentrations-computation of mass-energy balance and greenhouse gas emissions[J]. Journal of Environmental Management, 2016, 166:374-386.
    [10]
    RAJAN R V, LIN J, RAY B T. Low-level chemical pretreatment for enhanced sludge solubilization[J]. Water Pollution Control Federation, 1989, 11(61):1678-1683.
    [11]
    UMA R R, ADISH K S, KALIAPPAN S, et al. Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment[J]. Ultrasonics Sonochemistry, 2014, 21(3):1065-1074.
    [12]
    KIM J, PARK C, KIM T H, et al. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge[J]. Journal of Bioscience and Bioengineering, 2003, 95(3):217-275.
    [13]
    ZHANG L, JAHNG D. Enhanced anaerobic digestion of piggery wastewater by ammonia stripping:effects of alkali types[J]. Journal of Hazardous Materials, 2010, 182(1/2/3):536-543.
    [14]
    APHA, Standard Methods for the Examination of Water and Wastewater, 21St Ed, Washington DC, USA.:American Public Health Association, 2005.
    [15]
    GAUDY A F. Colorimetric determination of protein and carbohydrate, Ind[J]. Water Wastes, 1962, 1(7):17-27.
    [16]
    LOWERY O H, ROSEBROUGH N J, FARR A L, et al. Protein Measurement with the Folin Phenol Reagent[J]. Journal of Biological Chemistry, 1951, 193:265-275.
    [17]
    REISSIG J L, STROMINGER J L, LELOIR L F. A modified colorimetric method for the estimation of N-acetylamino sugars[J]. Journal of Biological Chemistry, 1955, 217(2):959-966.
    [18]
    HAN X M, WANG Z W, WANG X Y, et al. Microbial responses to membrane cleaning using sodium hypochlorite in membrane bioreactors:cell integrity, key enzymes and intracellular reactive oxygen species[J]. Water Research, 2016, 88:293-300.
    [19]
    ABZAZOU T, SALVADÓ H, BRUGUERA C, et al. Assessment of total bacterial cells in extended aeration activated sludge plants using flow cytometry as a microbial monitoring tool[J]. Environmental Science and Pollution Research, 2015, 22(15):11446-11455.
    [20]
    CHEN Z, ZHANG W J, WANG D S, et al. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation[J]. Water Research, 2016, 103:170-181.
    [21]
    LÓPEZ T M, ESPINOSA L M D C. Effect of alkaline pretreatment on anaerobic digestion of solid wastes[J]. Waste Manage, 2008, 28(11):2229-2234.
    [22]
    KIM J, PARK C, KIM T H, et al. Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge[J]. Journal of Bioscience & Bioengineering, 2003, 95(3):271-275.
    [23]
    KIM D, JEONG E, OH S, et al. Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration[J]. Water Research, 2010, 44(10):3093-3100.
    [24]
    XIAO B Y, LIU C, LIU J X, et al. Evaluation of the microbial cell structure damages in alkaline pretreatment of waste activated sludge[J]. Bioresource Technology, 2015, 196:109-115.
    [25]
    CHEN Z, ZHANG W J, WANG D S, et al. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation[J]. Water Research, 2016, 103:170-181.
    [26]
    GUO X S, LIU J X, XIAO B Y. Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge[J]. Journal of Biotechnology, 2014, 188(1):130-135.
    [27]
    YANG Q, LUO K, LI X M, et al. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes[J]. Bioresource Technology, 2010, 101(9):2924-2930.
  • Relative Articles

    [1]SHANG Min, JIA Yangjiacuo, LIU Hongtao, LIU Yi, YUAN Bo, CHEN Ying, LIU Min. QUANTITATIVE STUDY ON THE EVOLUTION CHARACTERISTICS AND DRIVING FACTORS OF GRASSLAND DESERTIFICATION IN RUOERGAI COUNTY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 43-51. doi: 10.13205/j.hjgc.202412006
    [2]ZHANG Lei, LI Xuemei, WEI Yuan, FENG Chenglian, SU Hailei, LIU Yuxian, ZHAO Yanan, LI Feilong, GUO Fen, ZHANG Yuan, XUE Jingchuan. ENVIRONMENTAL OCCURRENCE AND ECOLOGICAL RISK ASSESSMENT OF PARABENS AND METABOLITES IN THE DONGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 91-99. doi: 10.13205/j.hjgc.202404011
    [3]GAO Yahong, LIN Bingquan, ZHAO Chen, LIU Yuxuan, AN Xinqi, ZHONG Yin, HU Qian, WANG Zhenbei, QIU Bin, QI Fei, SUN Dezhi. THE CHARACTERISTICS OF INITIAL RAINWATER POLLUTION AND INTERCEPTION AND STORAGE IN HILLY TOWNS IN THE YANGTZE RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 191-200. doi: 10.13205/j.hjgc.202409018
    [4]LIU Jie, GE Xiao, ZHAO Zhenyu. RESEARCH ON SPATIO-TEMPORAL EVOLUTION OF CARBON ARRANGEMENT IN NORTH CHINA CITIES AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 204-212,222. doi: 10.13205/j.hjgc.202310024
    [5]GUO Yake, GAO Yanyan, QIAN Hui, TANG Shunqi, WANG Haike, SHI Xiaoxin. SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN THE CHU RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 112-119. doi: 10.13205/j.hjgc.202301014
    [6]WU Ya'nan, REN Xinxin, GAO Yuzhi, WANG Weidong, LI Kejia. SHENZHEN'S PRACTICE OF POLLUTION PREVENTION AND CONTROL OF RAINFALL OVERFLOW BASED ON WATER ENVIRONMENT GOVERNANCE IN SMALL WATERSHED[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 99-106. doi: 10.13205/j.hjgc.202312012
    [7]YUAN Lei, YANG Zanxian, LONG Haixiao, CHEN Guoping, LI Qiangjun, WU Xiaowei. ANALYSIS OF SPATIOTEMPORAL EVOLUTION OF WATER RESOURCES CARRYING CAPACITY IN KUNMING BASED ON ENTROPY WEIGHT METHOD AND MARKOV MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 202-209. doi: 10.13205/j.hjgc.202306027
    [8]DU Ying'en, HOU Jingming, CHAI Jie, BAI Guangbi, LI Xuan, ZHANG Hongfang, ZHANG Zhaoan, CHEN Guangzhao, LI Bingyao. TEMPORAL VARIATION CHARACTERISTICS OF PRECIPITATION EXTREMES IN XI'AN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 41-46. doi: 10.13205/j.hjgc.202211006
    [9]LI Aimin, MU Yunsong. Zhibo Interview with Scientists: Research on Wastewater Toxicity Control Technology of Typical Chemical Parks in the Yangtze River Basin[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 254-255.
    [10]CHENG Hongsheng, DING Jingtao, MENG Haibo, SHEN Yujun, ZHOU Haibin, SONG Liqiu, ZHANG Xi, XU Pengxiang, ZHANG Pengyue, WANG Xinyu, LI Ran, WANG Juan, ZHANG Ying, YAN Haipeng. ANALYSIS ON WHOLE CHAIN TECHNOLOGY OF LIVESTOCK MANURE RESOURCE UTILIZATION IN THE YANGTZE RIVER BASIN PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 240-247. doi: DOI:10.13205/j.hjgc.202207033
    [11]WANG Xin-wen, LIU Zi-qi, GUO Qiong-qiong, LI Yuan, LI Kai-ping, ZHANG Chen-yue. SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS AND POLLUTION SOURCE EVALUATION OF WATER QUALITY IN THE HUANGZHOUHE RIVER BASIN, GUIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 69-75. doi: 10.13205/j.hjgc.202109011
    [12]LIU Zhao, ZHOU Hong, LIU Wei, CAO Wen-jia, LAN Sheng-tao. HEAVY METAL CONCENTRATION PROPERTIES ANALYSIS AND PRIMARY HEALTH RISK ASSESSMENT IN GROUNDWATER IN THE QINGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 196-203. doi: 10.13205/j.hjgc.202105028
    [17]Cheng Nianliang, Li Yunting, Zhang Dawei, Sun Ruiwen, Dong Xin, Cheng Bingfen, Li Hongxia. ANALYSIS ON THE SPATIAL AND TEMPORAL DISTRIBUTION OF PM2. 5 IN BEIJING IN 2013[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 43-46. doi: 10.13205/j.hjgc.201510010
    [18]Xu Xin Cui Xiaoai, . STUDY ON SPATIOTEMPORAL EVOLUTION OF ENVIRONMENTAL EFFICIENCY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 127-131. doi: 10.13205/j.hjgc.201508029
  • Cited by

    Periodical cited type(8)

    1. 余锦涛,孙天宇,戴毅. 水力压裂结合化学氧化法修复多环芳烃污染的低渗土壤. 环境污染与防治. 2024(02): 174-180 .
    2. 邱志浩. 企业土壤环境风险管理水平分级评价方法研究. 环境科学导刊. 2024(04): 92-96 .
    3. 李俊,胡健,马文敏,王鹏,郑厚义,卢然. 石油污染土壤修复技术研究进展. 生态学杂志. 2024(08): 2502-2512 .
    4. 丁森旭,冉宗信,孙晓霜,彭云霄,余江. 修复多环芳烃污染地块的土壤氧化剂需求量. 深圳大学学报(理工版). 2023(01): 48-55 .
    5. 杨玉敏,孙明波,张博宇. 石油烃污染场地气相抽提-微生物降解耦合修复研究. 炼油技术与工程. 2023(12): 59-64 .
    6. 施维林,罗王捷. 有机物污染土壤修复技术研究与应用进展. 苏州科技大学学报(自然科学版). 2022(02): 1-8 .
    7. 谢宜,史学峰,李昌武,张海隆,田宝虎. 化学氧化联合微生物修复石油烃污染土壤. 湖南有色金属. 2022(03): 60-62+80 .
    8. 黄旋,郭宝蔓,顾爱良,张云,田恬,曾跃春. 污染场地水平修复井技术的研究进展及应用实践. 环境工程. 2022(09): 262-269 . 本站查看

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.9 %FULLTEXT: 11.9 %META: 85.5 %META: 85.5 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.6 %其他: 12.6 %上海: 2.2 %上海: 2.2 %东莞: 1.3 %东莞: 1.3 %临汾: 0.3 %临汾: 0.3 %伦敦: 0.3 %伦敦: 0.3 %内江: 0.6 %内江: 0.6 %北京: 8.5 %北京: 8.5 %南京: 6.6 %南京: 6.6 %南宁: 0.6 %南宁: 0.6 %合肥: 0.3 %合肥: 0.3 %嘉兴: 1.6 %嘉兴: 1.6 %大兴安岭: 0.3 %大兴安岭: 0.3 %宁德: 1.3 %宁德: 1.3 %宁波: 0.9 %宁波: 0.9 %安康: 0.6 %安康: 0.6 %宜昌: 1.6 %宜昌: 1.6 %宜春: 0.3 %宜春: 0.3 %常州: 0.3 %常州: 0.3 %常德: 0.6 %常德: 0.6 %广安: 1.3 %广安: 1.3 %广州: 0.9 %广州: 0.9 %开封: 0.3 %开封: 0.3 %张家口: 0.6 %张家口: 0.6 %成都: 0.9 %成都: 0.9 %扬州: 1.6 %扬州: 1.6 %昆明: 2.8 %昆明: 2.8 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.6 %朝阳: 0.6 %杭州: 1.3 %杭州: 1.3 %武汉: 6.0 %武汉: 6.0 %沈阳: 0.6 %沈阳: 0.6 %沙田: 0.3 %沙田: 0.3 %泰安: 0.3 %泰安: 0.3 %济南: 0.3 %济南: 0.3 %济源: 0.6 %济源: 0.6 %海口: 0.3 %海口: 0.3 %淮南: 0.3 %淮南: 0.3 %深圳: 0.3 %深圳: 0.3 %漯河: 1.3 %漯河: 1.3 %福州: 0.6 %福州: 0.6 %纽约: 1.3 %纽约: 1.3 %芒廷维尤: 18.2 %芒廷维尤: 18.2 %芜湖: 0.3 %芜湖: 0.3 %芝加哥: 0.6 %芝加哥: 0.6 %西宁: 7.5 %西宁: 7.5 %达州: 0.9 %达州: 0.9 %运城: 3.8 %运城: 3.8 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.6 %邯郸: 0.6 %郑州: 1.3 %郑州: 1.3 %鄂州: 0.3 %鄂州: 0.3 %重庆: 0.3 %重庆: 0.3 %青岛: 0.9 %青岛: 0.9 %香港: 0.3 %香港: 0.3 %马鞍山: 0.3 %马鞍山: 0.3 %其他上海东莞临汾伦敦内江北京南京南宁合肥嘉兴大兴安岭宁德宁波安康宜昌宜春常州常德广安广州开封张家口成都扬州昆明晋城朝阳杭州武汉沈阳沙田泰安济南济源海口淮南深圳漯河福州纽约芒廷维尤芜湖芝加哥西宁达州运城遵义邯郸郑州鄂州重庆青岛香港马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (454) PDF downloads(10) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return