Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 39 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
ZHANG Bo, ZHAO Yi-hua, TAO Jun, JI Min, MA Tong-yu, SHANG Chen. INFLUENCE MECHANISM AND KINETIC STUDY OF CaO PRETREATMENT ON HIGH-SOLID SLUDGE ANAEROBIC DIGESTION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 140-146. doi: 10.13205/j.hjgc.202104022
Citation: ZHANG Bo, ZHAO Yi-hua, TAO Jun, JI Min, MA Tong-yu, SHANG Chen. INFLUENCE MECHANISM AND KINETIC STUDY OF CaO PRETREATMENT ON HIGH-SOLID SLUDGE ANAEROBIC DIGESTION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 140-146. doi: 10.13205/j.hjgc.202104022

INFLUENCE MECHANISM AND KINETIC STUDY OF CaO PRETREATMENT ON HIGH-SOLID SLUDGE ANAEROBIC DIGESTION PERFORMANCE

doi: 10.13205/j.hjgc.202104022
  • Received Date: 2020-04-29
    Available Online: 2021-07-21
  • To resolve the problem of low hydrolysis rate of high-solid waste activated sludge during anaerobic digestion process, CaO was used to disintegrate high-solid sludge. Physical and chemical characters of sludge before and after alkaline pretreatment were evaluated in terms of particle size, and soluble COD, protein, carbohydrate. Effect of alkaline pretreatment on cumulative methane yield and organism decomposition during high-solid anaerobic digestion process were also studied. The influence mechanism of EPS, cell wall and cell membrane cracking degree on anaerobic digestion performance under different alkali levels were studied. The results indicated that after the CaO pretreatment, the particle size of sludge was hardly changed, and the concentrations of SCOD, soluble protein and carbohydrate showed an obvious increase trend. The disintegration degree increased with the dosage of CaO. After alkaline pretreatment, the cumulative methane yield increased by 22.9%~34.8%. The mechanism discussion results showed that only organic matters in EPS could be released during low-alkali pretreatment, which promoted the cumulative methane yield, while organic matters in EPS and intracellular polymers were both released during high-alkali pretreatment, which led to the increase of cumulative methane yield. Kinetics study results showed that alkaline pretreatment could not only enhance methane yield, but also accelerate the anaerobic digestion and shorten the inhibitory stage.
  • loading
  • [1]
    ZHANG B, JI M, WANG F, et al. Damage of EPS and cell structures and improvement of high-solid anaerobic digestion of sewage sludge by combined (Ca(OH)2+ multiple:transducer ultrasonic) pretreatment[J]. RSC Advances 2017, 37(7):22706-22714.
    [2]
    晏发春,汪恂,张雷. 高温热水解预处理厌氧消化技术实例分析[J]. 中国给水排水,2016,32(18):35-37.
    [3]
    LIAO X C, LI H, ZHANG Y Y, et al. Accelerated High-Solids Anaerobic Digestion of Sewage Sludge Using Low-Temperature Thermal Pretreatment[J]. International Biodeterioration & Biodegradation, 2016, 106:141-149.
    [4]
    王广启,吴静,左剑恶等. 城市污泥高固体浓度厌氧消化的研究进展[J].中国沼气,2013,31(6):9-12.
    [5]
    刘峰林,左剑恶,林甲等. 高含固率污泥预处理方法及其在污泥厌氧消化中的作用[J].中国沼气,2012,30(6):3-6.
    [6]
    ŞCAHINKAYA S, SEVIMLI M F. Synergistic effects of sono-alkaline pretreatment on anaerobic biodegradability of waste activated sludge[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(1):197-206.
    [7]
    TIAN X B, WANG C, TRZCINSKI A P, et al. Insights on the solubilization products after combined alkaline and ultrasonic pre-treatment of sewage sludge[J]. Journal of Environmental Sciences-China, 2015, 29(3):97-105.
    [8]
    王平. 热水解厌氧消化工艺的分析和应用探讨[J]. 给水排水,2015,(1):33-38.
    [9]
    PILLI S, YAN S, TYAGI R D, et al. Anaerobic digestion of ultrasonicated sludge at different solids concentrations-computation of mass-energy balance and greenhouse gas emissions[J]. Journal of Environmental Management, 2016, 166:374-386.
    [10]
    RAJAN R V, LIN J, RAY B T. Low-level chemical pretreatment for enhanced sludge solubilization[J]. Water Pollution Control Federation, 1989, 11(61):1678-1683.
    [11]
    UMA R R, ADISH K S, KALIAPPAN S, et al. Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment[J]. Ultrasonics Sonochemistry, 2014, 21(3):1065-1074.
    [12]
    KIM J, PARK C, KIM T H, et al. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge[J]. Journal of Bioscience and Bioengineering, 2003, 95(3):217-275.
    [13]
    ZHANG L, JAHNG D. Enhanced anaerobic digestion of piggery wastewater by ammonia stripping:effects of alkali types[J]. Journal of Hazardous Materials, 2010, 182(1/2/3):536-543.
    [14]
    APHA, Standard Methods for the Examination of Water and Wastewater, 21St Ed, Washington DC, USA.:American Public Health Association, 2005.
    [15]
    GAUDY A F. Colorimetric determination of protein and carbohydrate, Ind[J]. Water Wastes, 1962, 1(7):17-27.
    [16]
    LOWERY O H, ROSEBROUGH N J, FARR A L, et al. Protein Measurement with the Folin Phenol Reagent[J]. Journal of Biological Chemistry, 1951, 193:265-275.
    [17]
    REISSIG J L, STROMINGER J L, LELOIR L F. A modified colorimetric method for the estimation of N-acetylamino sugars[J]. Journal of Biological Chemistry, 1955, 217(2):959-966.
    [18]
    HAN X M, WANG Z W, WANG X Y, et al. Microbial responses to membrane cleaning using sodium hypochlorite in membrane bioreactors:cell integrity, key enzymes and intracellular reactive oxygen species[J]. Water Research, 2016, 88:293-300.
    [19]
    ABZAZOU T, SALVADÓ H, BRUGUERA C, et al. Assessment of total bacterial cells in extended aeration activated sludge plants using flow cytometry as a microbial monitoring tool[J]. Environmental Science and Pollution Research, 2015, 22(15):11446-11455.
    [20]
    CHEN Z, ZHANG W J, WANG D S, et al. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation[J]. Water Research, 2016, 103:170-181.
    [21]
    LÓPEZ T M, ESPINOSA L M D C. Effect of alkaline pretreatment on anaerobic digestion of solid wastes[J]. Waste Manage, 2008, 28(11):2229-2234.
    [22]
    KIM J, PARK C, KIM T H, et al. Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge[J]. Journal of Bioscience & Bioengineering, 2003, 95(3):271-275.
    [23]
    KIM D, JEONG E, OH S, et al. Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration[J]. Water Research, 2010, 44(10):3093-3100.
    [24]
    XIAO B Y, LIU C, LIU J X, et al. Evaluation of the microbial cell structure damages in alkaline pretreatment of waste activated sludge[J]. Bioresource Technology, 2015, 196:109-115.
    [25]
    CHEN Z, ZHANG W J, WANG D S, et al. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation[J]. Water Research, 2016, 103:170-181.
    [26]
    GUO X S, LIU J X, XIAO B Y. Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge[J]. Journal of Biotechnology, 2014, 188(1):130-135.
    [27]
    YANG Q, LUO K, LI X M, et al. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes[J]. Bioresource Technology, 2010, 101(9):2924-2930.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (423) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return