Citation: | SUN Xing, HU Kai, LEI Chen-yu, CHEN Wei. EFFECT OF FREEZING/THAWING PRETREATMENT ON EXCESS SLUDGE DISINTEGRATION AND TREATMENT EFFICIENCY OF MICROBIAL ELECTROLYSIS CELL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 147-155. doi: 10.13205/j.hjgc.202104023 |
[1] |
白妮,王爱民,王金玺,等. 城市剩余污泥处置与利用技术研究新进展[J]. 工业用水与废水,2019, 50(4):6-11.
|
[2] |
ARVIN A, HOSSEINI M, AMIN M M, et al. Efficient methane production from petrochemical wastewater in a single membrane-less microbial electrolysis cell:the effect of the operational parameters in batch and continuous mode on bioenergy recovery[J]. Journal of Environmental Health Science and Engineering, 2019, 17(1):305-317.
|
[3] |
高彬,刘茜. 冻融法对剩余污泥脱水性能的研究[J]. 环境与发展, 2018, 30(11):113-114.
|
[4] |
ORMECI B, VESILIND P A. Effect of dissolved organic material and cations on freeze-thaw conditioning of activated and alum sludges[J]. Water Research, 2001, 35(18):4299-4306.
|
[5] |
MONTUSIEWICZ A, LEBIOCKA M, ROZEJ A, et al. Freezing/thawing effects on anaerobic digestion of mixed sewage sludge[J]. Bioresource Technology, 2010, 101(10):3466-3473.
|
[6] |
VILLANO M, AULENTA F, BECCARI M, et al. Start-up and Performance of an Activated Sludge Bioanode in Microbial Electrolysis Cells[J]. Chemical Engineering Transactions, 2012:109-114.
|
[7] |
胡凯. 污泥预处理-厌氧消化工艺性能及预处理过程中有机物变化[D]. 哈尔滨:哈尔滨工业大学, 2011.
|
[8] |
国家环境保护总局. 水与废水监测分析方法[M]. 北京:中国环境科学出版社, 2002.
|
[9] |
何盛东,陈思,李小虎,等. 单室双阳极微生物电解池利用氢发酵废水产氢[J]. 环境工程学报, 2019, 13(6):1441-1448.
|
[10] |
E L B, DOUGLAS C, SHAOAN C, et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology, 2008, 42(23).
|
[11] |
陈兴财,张丰松,童心,等. 畜禽粪便冻融作用后磷形态分布及其释放特征[J]. 环境科学学报, 2019, 39(5):1617-1625.
|
[12] |
代东梁. 冻融预处理对剩余污泥制氢效能的研究[D]. 长春:吉林建筑大学, 2015.
|
[13] |
贺张伟. 预处理方法对污泥厌氧耦合微生物电解及厌氧消化产能的影响[D]. 哈尔滨:哈尔滨工程大学, 2014.
|
[14] |
JAN T W, ADAV S S, LEE D J, et al. Hydrogen Fermentation and Methane Production from Sludge with Pretreatments[J]. Energy & Fuels, 2008, 22(1):98-102.
|
[15] |
王晶,田东军,刘芳,等. 微波联合MEC处理市政污泥运行性能研究[J]. 工业水处理, 2019, 39(6):61-64.
|
[16] |
LU L, XING D, REN N. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge[J]. Water Research, 2012, 46(7):2434.
|
[17] |
YANG C, LIU W, HE Z, et al. Freezing/thawing pretreatment coupled with biological process of thermophilic Geobacillus sp. G1:acceleration on waste activated sludge hydrolysis and acidification[J]. Bioresource Technology, 2015, 175:509-516.
|
[18] |
EATON A. Measuring UV-Absorbing Organics:a Standard Method[J]. Journal-American Water Works Association, 1995, 87(2):86-90.
|
[19] |
陈悦佳,赵庆良,柳成才. 冻融处理对不同阴极构型MFC产电及有机物降解的影响[J]. 中国环境科学, 2015, 35(5):1359-1367.
|
[20] |
HU K, JIA S, YANG C, et al. Combined freezing-thawing pretreatment and microbial electrolysis cell for enhancement of highly concentrated organics degradation from dewatered sludge[J]. Bioengineered, 2020, 11(1):301-310.
|
[21] |
HARI A R, KATURI K P, GORRON E, et al. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate[J]. Applied Microbiology and Biotechnology, 2016, 100(13):5999-6011.
|
[22] |
梁庆,李华华,邢德峰. 基于多Agent仿真解析处理剩余污泥的微生物电解池种群互作关系[J]. 微生物学通报, 2019, 46(8):1886-1895.
|
[23] |
RAO H A, KRISHNAVENI V, P K K, et al. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells-Influence of Acetate and Propionate Concentration[J]. Frontiers in Microbiology, 2017, 8.
|
[24] |
LEE H S, RITTMANN B E. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell[J]. Environmental Science & Technology, 2010, 44(3):948-954.
|
[25] |
赵欣,吴忆宁,王岭,等. 单室微生物电解池除镍途径分析及微生物群落动态特征[J]. 微生物学报, 2016, 56(11):1794-1801.
|
[26] |
代红艳,杨慧敏,刘宪,等. 废旧金属网阴极微生物电解池产氢性能及阳极微生物群落结构分析[J]. 电化学, 2019, 25(6):773-780.
|
[27] |
陈末,朱新萍,蒋靖佰伦,等. 冻融期巴音布鲁克高寒湿地土壤细菌群落变化及其响应机制[J]. 农业环境科学学报, 2020, 39(1):134-142.
|
[28] |
WRIGHTON K C, AGBO P, WARNECKE F, et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells[J]. The ISME Journal, 2008, 2(11):1146-1156.
|
[29] |
孙彩玉. 基于BES污水处理-产能研究及微生物群落结构解析[D]. 哈尔滨:东北林业大学, 2016.
|
[30] |
BAO T, FENG J, JIANG W, et al. Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum[J]. World Journal of Microbiology and Biotechnology, 2020, 36(9).
|
[31] |
TOMONORI K, SHIRO Y, RYOHEI U, et al. Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge[J]. Fems Microbiology Ecology, 2016(6):78.
|
[32] |
LIU Y, NIU Q, WANG S, et al. Upgrading of the symbiosis of Nitrosomanas and anammox bacteria in a novel single-stage partial nitritation-anammox system:nitrogen removal potential and microbial characterization[J]. Bioresource Technology, 2017:463-472.
|
[33] |
J G M, PAULA M, JESÚS G, et al. Nitrogen removal capacity and bacterial community dynamics of a Canon biofilter system at different organic matter concentrations[J]. Chemosphere, 2017, 193.
|
[34] |
YANG G, YIN Y, WANG J. Microbial community diversity during fermentative hydrogen production inoculating various pretreated cultures[J]. International Journal of Hydrogen Energy, 2019, 44(26):13147-13156.
|