Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 39 Issue 5
Jan.  2022
Turn off MathJax
Article Contents
GUO Peng-fei, DONG Zi-yi, WANG Ying, FU Jun, WANG Jing-gang, LIU Xian-jing. EFFECTS OF DIFFERENT DOSING METHODS OF SLOW-RELEASE OXYGEN COMPOSITE MATERIALS ON THE MIGRATION OF POLLUTANTS AT THE SEDIMENT-WATER INTERFACE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 1-8. doi: 10.13205/j.hjgc.202105001
Citation: GUO Peng-fei, DONG Zi-yi, WANG Ying, FU Jun, WANG Jing-gang, LIU Xian-jing. EFFECTS OF DIFFERENT DOSING METHODS OF SLOW-RELEASE OXYGEN COMPOSITE MATERIALS ON THE MIGRATION OF POLLUTANTS AT THE SEDIMENT-WATER INTERFACE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 1-8. doi: 10.13205/j.hjgc.202105001

EFFECTS OF DIFFERENT DOSING METHODS OF SLOW-RELEASE OXYGEN COMPOSITE MATERIALS ON THE MIGRATION OF POLLUTANTS AT THE SEDIMENT-WATER INTERFACE

doi: 10.13205/j.hjgc.202105001
  • Received Date: 2020-07-24
    Available Online: 2022-01-17
  • In order to improve the lake sediment-water interface habitat, a slow-release oxygen material that can supply oxygen in situ and reduce the release of endogenous nitrogen was developed. The slow-release oxygen material prepared with CaO2:white clay:cement=2:1:1 (mass ratio) had good oxygen release and pH buffering capability. The simulation experiment compared the effects of different dosing methods of slow-release oxygen materials (surface dosing and in-mud dosing) on the release of oxygen and the release of pollutants in the sediments. The results showed that:1) the DO concentration and pH value of the overlying water were significantly increased by surface dosing, and in-mud dosing could maintain the pH value within 7.5, while the DO concentration increased slowly, prolonging the oxygen release period; 2) slow-release oxygen materials had a significant inhibitory effect on release of NH4+-N in the sediment, and surface dosing was significantly effective than in-mud dosing. Taking the blank group as the reference, after 31 days of static culture, the inhibition rate of NH4+-N by adding slow-release oxygen material into the mud was 53.4%, and that of the surface dosing was 81.1%. Adding oxygen-releasing materials increased the level of DO in the overlying water and promoted the growth of nitrifying bacteria, thereby inhibiting the release of NH4+-N; 3) slow-release oxygen materials were beneficial to microorganisms growth which promoted the humification of microorganisms, thereby slightly promoted the release of terrestrial-like humic acids in the sediments, while slightly inhibited the release of tyrosine-like proteins; 4) slow-release oxygen materials could promote the conversion of Fe/Al-P to Ca-P in the sediment which slightly inhibited the release of DIP, but the release of DOC and arsenic and chromium in the sediment increased slightly, due to the increase of pH.
  • loading
  • [1]
    张启超,杨鑫,孙淑雲,等.过氧化钙在处理厌氧底泥中的应用初探[J].湖泊科学,2015,27(6):1087-1092.
    [2]
    黄荣才,梁艺丰,丁国良,等.缓释氧复合材料对上覆水中污染物去除和碱度硬度的影响[J].台州学院学报,2019,41(3):42-47.
    [3]
    周婧. 基于净水污泥缓释过氧化钙材料的制备及其抑制内源磷释放的效果[D].苏州:苏州科技大学,2019.
    [4]
    王妙,张华俊,陈海峰,等.沸石联合过氧化钙对黑臭河道底泥营养盐释放的作用研究[J].广东化工,2017,44(4):36-37.
    [5]
    黄靖宇,徐佳,李传龙,等.缓释氧剂的制备及其在黑臭水体治理方面的应用研究[J].现代化工,2018,38(12):165-169.
    [6]
    李亮,武成辉,林翰志,等.复合释氧剂的制备及其对水体修复的作用[J].环境工程,2017,35(9):1-6

    ,191.
    [7]
    LIU C Y, SPEITEL G E, GEORGIOU G. Kinetics of methyl t-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria[J]. Applied & Environmental Microbiology, 2001, 67(5):2197-2201.
    [8]
    LIU S J, JIANG B, HUANG G Q, et al. Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier[J]. Water Research, 2006, 40(18):3401-3408.
    [9]
    LIN C W, WU C H, TANG C T, et al. Novel oxygen-releasing immobilized cell beads for bioremediation of BTEX-contaminated water[J]. Bioresource Technology, 2012, 124:45-51.
    [10]
    国家环境保护总局, 水和废水监测分析方法编委会.水和废水监测分析方法[M].4版. 北京:中国环境科学出版社,2002:243-250,254-257

    ,670-671.
    [11]
    YANG W Q, XIAO H, LI Y, et al. V ertical distribution and release characteristics of phosphorus forms in the sediments from the river inflow area of Dianchi Lake, China[J]. Chemical Speciation & Bioavailability, 2018, 30(1):14-22.
    [12]
    郭晨辉,李和祥,方芳,等.钼锑抗分光光度法对黄河表层沉积物中磷的形态分布及其吸附-解吸特征研究[J].光谱学与光谱分析,2018,38(1):218-223.
    [13]
    韩琦,薛爽,刘影,等.河流底泥中溶解性有机物的释放途径及影响因素研究[J].中国环境科学,2016,36(12):3737-3749.
    [14]
    ALBA G R,ANDREA B. Hydrological conditions regulate dissolved organic matter quality in an intermittent headwater stream. From drought to storm analysis[J]. Science of the Total Environment,2016,571:1358-1369.
    [15]
    ADAM Z,ERIK B,MIGUEL J, et al. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying[J]. Chemosphere,1999,38(1):45-50.
    [16]
    PARLANTI E, WÖRZ K, GEOFFROY L, et al. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs[J]. Organic Geochemistry,2000,31(12):1765-1781.
    [17]
    谷雨.污水处理中硝化细菌生存的影响因素分析[J].江西化工,2020(3):130-132.
    [18]
    夏德春,郑翔,吕树光,等.过氧化钙缓释材料对河道水固磷及底泥控磷的机理研究[J].环境污染与防治,2020,42(5):553-557

    ,564.
    [19]
    ARIENZO M. Degradation of 2,4,6-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound[J]. Chemosphere,2000,40(4):331-337.
    [20]
    韩琦,薛爽,刘影,等.河流底泥中溶解性有机物的释放途径及影响因素研究[J].中国环境科学,2016,36(12):3737-3749.
    [21]
    WILLIAM P J,BRUCE E L. Enhanced transport of bacteria in porous media by sediment-phase and aqueous-phase natural organic matter[J]. Water Research,1996,30(4):923-931.
    [22]
    GAO L, FAN D D, LI D J, et al. Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China[J]. Marine Environmental Research, 2010, 69(3):187-197.
    [23]
    陈静生,周家义.中国水环境重金属研究[M].北京:中国环境科学出版社, 1992.
    [24]
    李世玉,刘彬,杨常亮,等.上覆水pH值和总磷浓度对含铁盐的高砷沉积物中砷迁移转化的影响[J].湖泊科学,2015,27(6):1101-1106.
    [25]
    童秀娟. 微生物对渭河河床沉积物-水界面Cr迁移转化的作用机理[D].西安:长安大学,2018.
    [26]
    SCHIMEL D, MELILLO J, TIAN H, et al. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States[J]. Science, 2000, 287(5460):2004-2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (255) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return