Citation: | CHEN Si-yu, ZHANG Shao-qing, CHEN Peng, CHEN Qiu-li, ZHANG Li-qiu, LI Shu-geng. RECENT ADVANCES IN PARTIAL DENITRIFICATION BASED BIOLOGICAL NITROGEN REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 38-44. doi: 10.13205/j.hjgc.202105006 |
[1] |
顾芳,杜睿. 彭永臻团队首次实现短程反硝化有望推动厌氧氨氧化的应用和发展[J]. 给水排水, 2016,52(7):73.
|
[2] |
MULDER A, GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995,16(3):177-183.
|
[3] |
XU G J, ZHOU Y, YANG Q, et al. The challenges of mainstream deammonification process for municipal used water treatment[J]. Applied Microbiology and Biotechnology, 2015,99(6):2485-2490.
|
[4] |
LIU T, HU S H, GUO J H. Enhancing mainstream nitrogen removal by employing nitrate/nitrite-dependent anaerobic methane oxidation processes[J]. Crit Rev Biotechnol, 2019,39(5):732-745.
|
[5] |
LE T, PENG B, SU C Y, et al. Impact of carbon source and COD/N on the concurrent operation of partial denitrification and anammox[J]. Water Environment Research, 2019,91(3):185-197.
|
[6] |
GE S J, PENG Y Z, WANG S Y, et al. Nitrite accumulation under constant temperature in anoxic denitrification process:the effects of carbon sources and COD/NO3-N[J]. Bioresource Technology, 2012,114:137-143.
|
[7] |
KALYUZHNYI S, GLADCHENKO M. DEAMOX-New microbiological process of nitrogen removal from strong nitrogenous wastewater[J]. Desalination, 2009,248(1/2/3):783-793.
|
[8] |
KALYUZHNYI S V, GLADCHENKO M A, KANG H, et al. Development and optimisation of VFA driven DEAMOX process for treatment of strong nitrogenous anaerobic effluents[J]. Water Science and Technology, 2008,57(3):323-328.
|
[9] |
KALYUZHNYI S, GLADCHENKO M, MULDER A, et al. DEAMOX:new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite[J]. Water Research, 2006,40(19):3637-3645.
|
[10] |
CAO S B, LI B K, DU R, et al. Nitrite production in a partial denitrifying upflow sludge bed (USB) reactor equipped with gas automatic circulation (GAC)[J]. Water Research, 2016,90:309-316.
|
[11] |
CAO S B, DU R K, LI B, et al. High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater[J]. Applied Microbiology and Biotechnology, 2016,100(14):6457-6467.
|
[12] |
HER J J, HUANG J S. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough[J]. Bioresource Technology, 1995,54(1):45-51.
|
[13] |
袁怡,黄勇,邓慧萍,等. C/N比对反硝化过程中亚硝酸盐积累的影响分析[J]. 环境科学, 2013,34(4):1416-1420.
|
[14] |
DU R, PENG Y Z, CAO S B, et al. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J]. Applied Microbiology and Biotechnology, 2016,100(4):2011-2021.
|
[15] |
SCHOPS M M R. Biological treatment of leachate from solid waste landfill sites:alterations in the bacterial community during the denitrification process[J]. Water Research, 1997,31(5):1164-1170.
|
[16] |
CAO S B, WANG S Y, PENG Y Z, et al. Achieving partial denitrification with sludge fermentation liquid as carbon source:the effect of seeding sludge[J]. Bioresource Technology, 2013,149:570-574.
|
[17] |
DU R, CAO S B, LI B K, et al. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 2017,108,46-56.
|
[18] |
孙洪伟,王淑莹,王希明,等. 低温SBR反硝化过程亚硝态氮积累试验研究[J]. 环境科学, 2009,30(12):3619-3623.
|
[19] |
尚会来,彭永臻,张静蓉. 不同电子受体反硝化过程中C/N对N2O产量的影响[J]. 环境科学, 2009,30(7):2007-2012.
|
[20] |
曹相生,付昆明,钱栋,等. 甲醇为碳源时C/N对反硝化过程中亚硝酸盐积累的影响[J]. 化工学报, 2010,61(11):2938-2943.
|
[21] |
马勇,彭永臻,王淑莹. 不同外碳源对污泥反硝化特性的影响[J]. 北京工业大学学报, 2009,35(6):820-824.
|
[22] |
FILIPPIS P D, PALMA L D, SCARSELLA M, et al. Biological denitrification of high-nitrate wastewater:a comparison between three electron donors[J]. Chemical Engineering Transactions (CET Journal), 2013,32:319-324.
|
[23] |
SUN H W, YANG Q, PENG Y Z, et al. Nitrite accumulation during the denitrification process in SBR for the treatment of pre-treated landfill leachate[J]. Chinese Journal of Chemical Engineering, 2009,17(6):1027-1031.
|
[24] |
M B. Effect of medium composition on the denitrification of nitrate by paracoccus denitrificans[J]. Applied and Environmental Microbiology, 1993,59(11):3951-3953.
|
[25] |
VAN RIJN J T Y, BARAK Y. Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor[J]. Applied and Environmental Microbiology, 1996,62(7):2615-2620.
|
[26] |
JI J T, PENG Y Z, WANG B, et al. Achievement of high nitrite accumulation via endogenous partial denitrification (EPD)[J]. Bioresource Technology, 2017,224:140-146.
|
[27] |
WANG X X, ZHAO J, YU D S, et al. Evaluating the potential for sustaining mainstream anammox by endogenous partial denitrification and phosphorus removal for energy-efficient wastewater treatment[J]. Bioresource Technology, 2019,284:302-314.
|
[28] |
LI W, LIU S, ZHANG M, et al. Oxidation of organic electron donor by denitratation:performance, pathway and key microorganism[J]. Chemical Engineering Journal, 2018,343:554-560.
|
[29] |
CHEN J W, STROUS M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution[J]. Biochim Biophysica Acta(BBA)-Bioenergetics, 2013,1827(2):136-144.
|
[30] |
QIAN W, MA B, LI X, et al. Long-term effect of pH on denitrification:high pH benefits achieving partial-denitrification[J]. Bioresource Technology, 2019,278:444-449.
|
[31] |
SI Z, PENG Y Z, YANG A M, et al. Rapid nitrite production via partial denitrification:pilot-scale operation and microbial community analysis[J]. Environmental Science:Water Research & Technology, 2018,4(1):80-86.
|
[32] |
SHI L L, DU R, PENG Y Z. Achieving partial denitrification using carbon sources in domestic wastewater with waste-activated sludge as inoculum[J]. Bioresource Technology, 2019,283:18-27.
|
[33] |
PAN Y T, YE L, NI B J, et al. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Water Research, 2012,46(15):4832-4840.
|
[34] |
LI W, SHAN X Y, WANG Z Y, et al. Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system:performance, microflora and enzymatic activities[J]. Water Research, 2016,88:758-765.
|
[35] |
JI J T, PENG Y Z, WANG B, et al. Effects of salinity build-up on the performance and microbial community of partial-denitrification granular sludge with high nitrite accumulation[J]. Chemosphere, 2018,209:53-60.
|
[36] |
CAO S B, DU R, LI B K, et al. Nitrite production from partial-denitrification process fed with low carbon/nitrogen (C/N) domestic wastewater:performance, kinetics and microbial community[J]. Chemical Engineering Journal, 2017,326:1186-1196.
|
[37] |
LI W, LI H, LIU Y D, et al. Salinity-aided selection of progressive onset denitrifiers as a means of providing nitrite for anammox[J]. Environmental Science & Technology, 2018,52(18):10665-10672.
|
[38] |
LIU B B, MAO Y J, BERGAUST L, et al. Strains in the genus Thauera exhibit remarkably different denitrification regulatory phenotypes[J]. Environmental Microbiolgoy, 2013,15(10):2816-2828.
|
[39] |
LE T, PENG B, SU C Y, et al. Nitrate residual as a key parameter to efficiently control partial denitrification coupling with anammox[J]. Water Environment Research, 2019,91(11):1455-1465.
|
[40] |
MA B, XU X X, WEI Y, et al. Recent advances in controlling denitritation for achieving denitratation/anammox in mainstream wastewater treatment plants[J]. Bioresource Technology, 2020,299:122697.
|
[41] |
JI J T, PENG Y Z, MAI W K, et al. Achieving advanced nitrogen removal from low C/N wastewater by combining endogenous partial denitrification with anammox in mainstream treatment[J]. Bioresource Technology, 2018,270:570-579.
|
[42] |
MARTIENSSEN M, SCHÖPS R. Population dynamics of denitrifying bacteria in a model biocommunity[J]. Water Research, 1999,33(3):639-646.
|
[43] |
LEE D Y, RAMOS A, MACOMBER L, et al. Taxis response of various denitrifying bacteria to nitrate and nitrite[J]. Applied and Environmental Microbiology, 2002,68(5):2140-2147.
|