Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Qian, WANG Wei, LUO Bin, WANG Kang. CONTRIBUTION OF POLLUTION REDUCTION MEASURES AND METEOROLOGICAL CONDITIONS TO IMPROVEMENT OF WATER ENVIRONMENT OF THE MINJIANG RIVER BASIN IN THE MIDDLE OF THE 13TH FIVE-YEAR PLAN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 45-54. doi: 10.13205/j.hjgc.202105007
Citation: LIU Qian, WANG Wei, LUO Bin, WANG Kang. CONTRIBUTION OF POLLUTION REDUCTION MEASURES AND METEOROLOGICAL CONDITIONS TO IMPROVEMENT OF WATER ENVIRONMENT OF THE MINJIANG RIVER BASIN IN THE MIDDLE OF THE 13TH FIVE-YEAR PLAN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 45-54. doi: 10.13205/j.hjgc.202105007

CONTRIBUTION OF POLLUTION REDUCTION MEASURES AND METEOROLOGICAL CONDITIONS TO IMPROVEMENT OF WATER ENVIRONMENT OF THE MINJIANG RIVER BASIN IN THE MIDDLE OF THE 13TH FIVE-YEAR PLAN BASED ON SWAT MODEL

doi: 10.13205/j.hjgc.202105007
  • Received Date: 2020-05-07
    Available Online: 2022-01-17
  • The distributed hydrological and pollution load model for the Minjiang River Basin was constructed based on SWAT. The Nash-Sutcliffe of simulated hydrological transformation processes exceeded 0.6 and Nash-Sutcliffe of simulated pollutant concentrations exceeded 0.5, which could effectively simulate the hydrological, concentration and flux transformation processes of the Minjiang River Basin from 2015 to 2018. The changes of the main pollutant discharge, the different emission reduction measures of Water Pollution Prevention Action Plan and the meteorological driving conditions contributed to the improvement of the water environment in the Minjiang River Basin were calculated. The results showed that CODMn, NH3, and total TP emissions of 11 national examination sections of the Minjiang River Basin decreased by 8%, 13%, and 12% in 2018, the discharge of wastewater in 8 national examination sections increased, and the discharge of major pollutants decreased simultaneously. The intensity of point sources decreased, but the density increased. The emission intensity in the middle of the Minjiang River Basin was high, and the amount of emission reduction was also prominent. The emission and reduction of pollutants of Chengdu were higher than Meishan at Liangjianggou section. Among the emission reduction measures, urban pollution control played a leading role in reducing pollutant emissions, contributing 53%, 71% and 81% of total emission reduction to CODMn, NH3 and TP, namely. The contribution of emission reduction from domestic sources was greater than that from industrial sources, and the contribution rate of the point sources emission reduction was greater than that of the non-point sources. The contribution rate of pollution reduction measures to the CODMn, NH3 and TP in Liangjianggou section were 20.7%, 26.8% and 34.4%, respectively.
  • [1]
    翟红娟,王培.岷江流域水资源开发与生态环境保护[J].环境保护,2018,46(9):22-26.
    [2]
    王刚,齐珺,潘涛,等.北运河流域(北京段)主要污染物减排措施效果评估[J].环境污染与防治,2016,38(6):39-45.
    [3]
    刘洪延.SWAT模型研究及应用进展[J].亚热带水土保持,2019,31(2):34-37.
    [4]
    王培. 基于GIS的SWAT模型在农业面源污染模拟中的应用[D].合肥:安徽农业大学,2008.
    [5]
    曹丽娟. 分布式陆面水文过程模式的研究[D].北京:中国气象科学研究院,2004.
    [6]
    杜强,王东胜.河道的生态功能及水文过程的生态效应[J].中国水利水电科学研究院学报,2005,3(4):287-290.
    [7]
    SRINIVASAN R,RAMANARAYANAN T S, ARNLD J G,et al. Large area hydrologic modeling and assessment part Ⅱ:model application[J]. Journal of the American Water Resources Association,2010,34(1):91-101.
    [8]
    MILEWSKI A,SULTAN M,YAN E,et al. A remote sensing solution for estimating runoff and recharge in arid environments[J]. Journal of Hydrology (Amsterdam),2009,373(1/2):1-14.
    [9]
    付意成,臧文斌,董飞,等.基于SWAT模型的浑太河流域农业面源污染物产生量估算[J].农业工程学报,2016,32(8):1-8.
    [10]
    赵雪松.SWAT模型在营口地区农业面源污染模拟中的应用研究[J].地下水,2020,42(3):84-85

    ,200.
    [11]
    郭军庭,张志强,王盛萍,等.应用SWAT模型研究潮河流域土地利用和气候变化对径流的影响[J].生态学报,2014,34(6):1559-1567.
    [12]
    KAUSHAL S S, GROFFMAN P M, BAND L E, et al. Tracking nonpoint source nitrogen pollution in human-impacted watersheds[J].Environmental Science & Technology, 2011,45(19):8225-8232.
    [13]
    张同,张承明,夏安全,等.不同分辨率下SWAT模型在大汶河径流模拟中的应用[J].水电能源科学,2017,35(8):27-30

    ,44.
    [14]
    冯畅,毛德华,周慧,等.气候变化对涟水流域蓝水绿水资源的影响[J].长江流域资源与环境,2017,26(10):1525-1537.
    [15]
    冯斌,李大鹏,周琦,等.基于WASP模型计算尾水回用河道污染负荷[J].环境工程学报,2014,8(10):4196-4202.
    [16]
    张宝,刘静玲,杨志峰.北京城市水系水环境模拟及情景分析[J].环境工程学报,2011,5(1):16-22.
  • Relative Articles

    [1]LI Feifei, SU Zhiguo, CAO Feng, MU Qinglin, HUANG Bei, CHEN Lüjun, WEN Donghui. CONTRIBUTION OF WASTEWATER DISCHARGE FROM SEWAGE TREATMENT PLANTS TO ANTIBIOTIC POLLUTION IN COASTAL WATER: A CASE STUDY OF HANGZHOU BAY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 1-8. doi: 10.13205/j.hjgc.202404001
    [2]CHEN Yi, LI Longguo, BAI Ting, CHEN Meng, HUANG Yanchun, FU Bin, LI Naiwen. EVALUATION AND CORRELATION ANALYSIS OF WATER/SEDIMENT POLLUTION STATUS IN CHENGDU SECTION OF THE TUOJIANG RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 144-152. doi: 10.13205/j.hjgc.202407016
    [3]GAO Yahong, LIN Bingquan, ZHAO Chen, LIU Yuxuan, AN Xinqi, ZHONG Yin, HU Qian, WANG Zhenbei, QIU Bin, QI Fei, SUN Dezhi. THE CHARACTERISTICS OF INITIAL RAINWATER POLLUTION AND INTERCEPTION AND STORAGE IN HILLY TOWNS IN THE YANGTZE RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 191-200. doi: 10.13205/j.hjgc.202409018
    [4]WANG Xuan, XIE Tian, ZHANG Yong, DOU Peng, CUI Baoshan, CAO Bo, LI Xinyu, DING Xinyu, YANG Zhihao. OPTIMIZATION OF ECOLOGICAL WATER SUPPLY AND LONG-TERM PROTECTION OF WETLAND BASED ON THE HYDRODYNAMIC PROCESS: A CASE STUDY OF HANSHIQIAO WETLAND IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 61-71. doi: 10.13205/j.hjgc.202301008
    [5]PAN Ying, HAN Rui, ZHANG Yin, ZHANG Jin, YI Qitao, LI Ruonan. SCENARIO STUDY OF HYDROLOGICAL PROCESS IN COAL MINING SUBSIDENCE AREA BASED ON SWAT-FLUS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 272-279. doi: 10.13205/j.hjgc.202206034
    [6]XU Xiaomei, WANG Taishan, LIANG Ying, ZHANG Junlong, FENG Juan. UNCERTAINTY ESTIMATION FOR TRADING RATE SYSTEM FOR EFFLUENT TRADING IN DAGU RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 177-183. doi: 10.13205/j.hjgc.202202027
    [7]LI Jing, TANG Min, LIANG Yi-xin. EVALUATION OF WATER QUALITY IMPROVEMENT EFFECT IN HAIHE RIVER BASIN IN HENAN PROVINCE FROM 2015 TO 2018[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 60-64,190. doi: 10.13205/j.hjgc.202005011
    [8]GAO Shang, HU Peng, CUI Song, ZHANG Zu-lin, XING Zhen-xiang, ZHANG Fu-xiang. NUMERICA SIMULATION AND UNCERTAINTY ANALYSIS OF SURFACE RUNOFF IN NAOLI RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 83-89. doi: 10.13205/j.hjgc.202010013
    [14]Xing Yiming, Li Mingshan Yang Jing Yang Lili Chen Yanzhi Chen Xi, . BEST AVAILABLE TECHNOLOGY FOR PRINTED CIRCUIT BOARDS CLEANER PRODUCTION AND POLLUTION ABATEMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 135-138?.
    [15]Feng Xiaofei Lu Yingying Chen Jia, . STUDY ON ALLOCATION METHOD OF TOTAL POLLUTANT LOAD BASED ON REDUCTION EQUITY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 143-146. doi: 10.13205/j.hjgc.201510032
  • Cited by

    Periodical cited type(5)

    1. 陈雨艳,俸强,王康. 基于SWAT模型污染防治措施对茫溪河水质改善影响研究. 四川环境. 2024(01): 24-31 .
    2. 杜欢,付蔚,邹瑜,梁丽娜,吴佳俊,索琳娜,王磊. 基于SWAT模型的岷江上游流域土地利用变化对径流的影响. 山东农业大学学报(自然科学版). 2023(01): 92-97 .
    3. 李文钰,侯精明,刘占衍,张松,栾广学,杜颖恩,韩占涛. 矿渣堆积对河网水质影响的数值模拟分析. 人民黄河. 2023(11): 95-99+105 .
    4. 吴瑶,袁旺,柳强,史箴,周淼. 气候变化和污染防治政策对岷江流域水质的影响研究. 四川环境. 2023(06): 68-75 .
    5. 张可,王雅楠,冯彬,张松贺,陈何舟,胡开明. 基于灰色NSGA-Ⅱ的水生态功能分区多目标管控模型. 运筹与管理. 2023(12): 29-35 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.9 %FULLTEXT: 10.9 %META: 88.4 %META: 88.4 %PDF: 0.7 %PDF: 0.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.7 %其他: 7.7 %China: 1.8 %China: 1.8 %[]: 0.4 %[]: 0.4 %上海: 3.9 %上海: 3.9 %东京: 0.4 %东京: 0.4 %东莞: 0.7 %东莞: 0.7 %临汾: 0.4 %临汾: 0.4 %临沂: 0.4 %临沂: 0.4 %北京: 2.1 %北京: 2.1 %十堰: 1.4 %十堰: 1.4 %南京: 1.1 %南京: 1.1 %南充: 0.7 %南充: 0.7 %嘉兴: 0.7 %嘉兴: 0.7 %大连: 0.4 %大连: 0.4 %天津: 2.5 %天津: 2.5 %宣城: 0.4 %宣城: 0.4 %宿迁: 2.1 %宿迁: 2.1 %常州: 0.4 %常州: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.4 %广州: 0.4 %延安: 0.4 %延安: 0.4 %成都: 2.8 %成都: 2.8 %扬州: 2.5 %扬州: 2.5 %昆明: 1.1 %昆明: 1.1 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.4 %朝阳: 0.4 %杭州: 1.8 %杭州: 1.8 %武汉: 0.4 %武汉: 0.4 %济源: 0.7 %济源: 0.7 %温州: 1.8 %温州: 1.8 %湖州: 0.4 %湖州: 0.4 %漯河: 7.0 %漯河: 7.0 %石家庄: 0.4 %石家庄: 0.4 %芒廷维尤: 11.3 %芒廷维尤: 11.3 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 1.4 %苏州: 1.4 %衢州: 0.7 %衢州: 0.7 %西宁: 26.8 %西宁: 26.8 %运城: 3.5 %运城: 3.5 %遵义: 0.4 %遵义: 0.4 %邯郸: 1.4 %邯郸: 1.4 %郑州: 2.5 %郑州: 2.5 %重庆: 0.7 %重庆: 0.7 %长沙: 0.7 %长沙: 0.7 %长治: 0.4 %长治: 0.4 %阳泉: 2.1 %阳泉: 2.1 %其他China[]上海东京东莞临汾临沂北京十堰南京南充嘉兴大连天津宣城宿迁常州常德广州延安成都扬州昆明晋城朝阳杭州武汉济源温州湖州漯河石家庄芒廷维尤芝加哥苏州衢州西宁运城遵义邯郸郑州重庆长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (250) PDF downloads(3) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return