Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 39 Issue 5
Jan.  2022
Turn off MathJax
Article Contents
WANG Su-jie, LIU Dong, YU Hong-lang, ZHANG Qing, XU Hai-lun. DYNAMIC CHARACTERISTICS OF FLOW FIELD AND CLEANING PRESSURE BASED ON SCATTERING STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 89-95. doi: 10.13205/j.hjgc.202105012
Citation: WANG Su-jie, LIU Dong, YU Hong-lang, ZHANG Qing, XU Hai-lun. DYNAMIC CHARACTERISTICS OF FLOW FIELD AND CLEANING PRESSURE BASED ON SCATTERING STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 89-95. doi: 10.13205/j.hjgc.202105012

DYNAMIC CHARACTERISTICS OF FLOW FIELD AND CLEANING PRESSURE BASED ON SCATTERING STRUCTURE

doi: 10.13205/j.hjgc.202105012
  • Received Date: 2020-07-07
    Available Online: 2022-01-17
  • In order to solve the problem of non-uniformity in the traditional pulse cleaning, the upper open scatter had been proposed to improve the internal flow field characteristics of the filter cartridge, so as to improve the cleaning efficiency. By numerical simulation method, the dynamic changes of pulse flow field and the dust cleaning pressure in the filter cartridge under different conditions were investigated, and the formation mechanism of the peak pressure of ash cleaning was explored. The results showed that the pulse-jet flow entered the filter cartridge in the form of pressure wave and transferred to the sidewall, and the pressure and radial velocity of the sidewall changed synchronously with time, and there was a direct connection between them. As a result of the diverting and guiding effect of the scatter on the jet flow, compared with no scatter case, the radial velocity of the upper part of the filter cartridge increased, thus dust cleaning pressure increased correspondingly, which the dust cleaning pressure increased from 484 Pa to 744 Pa, by 53.7%. On the contrary, the flow rate and axial velocity of the impulse injection in the middle and lower part of the filter cartridge would be reduced, the compression effect of the impulse airflow on the gas inside the filter cartridge would be reduced as well. The pressure in the middle and lower parts would be reduced respectively, and the pressure peak in the lower part decreased from 2175 Pa to 1468 Pa, by 32.5%. Therefore, adding a scatterer could obviously improve the uniformity of pulse ash cleaning and meet the requirements of ash cleaning.
  • loading
  • [1]
    张卫东, 苏海佳, 高坚. 袋式除尘器及其滤料的发展[J]. 化工进展, 2003,22(4):380-384.
    [2]
    范兰, 王加东, 陈立萍, 等. 矿用干式除尘器的研发与应用[J]. 环境工程, 2014, 32(1):80-83

    ,63.
    [3]
    SCHILDERMANS I, BAEYENS J, SMOLDERS K. Pulse jet cleaning of rigid filters:a literature review and introduction to process modelling[J]. Filtration and Separation, 2004, 41(5):26-33.
    [4]
    SIMON X, BÉMER D, CHAZELET S, et al. Consequences of high transitory airflows generated by segmented pulse-jet cleaning of dust collector filter bags[J]. Powder Technology, 2010, 201(1):37-48.
    [5]
    THÉRON F, JOUBERT A, LE COQ L. Numerical and experimental investigations of the influence of the pleat geometry on the pressure drop and velocity field of a pleated fibrous filter[J]. Separation and Purification Technology, 2017, 182:69-77.
    [6]
    LI S H, ZHOU F B, XIE B, et al. Influence of injection pipe characteristics on pulse-jet cleaning uniformity in a pleated cartridge filter[J]. Powder Technology, 2018, 328:264-274.
    [7]
    胥海伦, 周苗苗, 张情,等. 开口散射器对滤筒除尘清灰性能影响的数值模拟[J]. 工业安全与环保, 2018, 44(6):53-57.
    [8]
    QIAN Y L, CHEN H Y, DAI H D, et al. Experimental study of the nozzle settings on blow tube in a pulse-jet cartridge filter[J]. Separation and Purification Technology, 2018, 191:244-249.
    [9]
    QIAN Y L, BI Y X, ZHANG Q, et al. The optimized relationship between jet distance and nozzle diameter of a pulse-jet cartridge filter[J]. Powder Technology, 2014, 266:191-195.
    [10]
    万凯迪, 王智化, 胡利华, 等. 袋式除尘器脉冲喷吹清灰过程的数值模拟[J]. 中国电机工程学报, 2014, 34(23):3970-3976.
    [11]
    YAN C P, LIU G J, CHEN H Y. Effect of induced airflow on the surface static pressure of pleated fabric filter cartridges during pulse jet cleaning[J]. Powder Technology, 2013, 249:424-430.
    [12]
    张情, 钱云楼, 毕远霞, 等. 诱导喷嘴改进滤筒清灰效果的数值模拟[J]. 环境工程学报, 2014, 8(7):2975-2979.
    [13]
    CHEN S W, CHEN D R. Annular-slit nozzles for reverse flow cleaning of pleated filter cartridges[J]. Separation and Purification Technology, 2017, 177:182-191.
    [14]
    胡峰源, 谭志洪, 熊桂龙, 等. 用于袋式除尘器的拉瓦尔型喷嘴脉冲清灰性能分析[J]. 环境工程, 2019, 37(6):117-122.
    [15]
    CHEN S W, WANG Q, CHEN D R. Effect of pleat shape on reverse pulsed-jet cleaning of filter cartridges[J]. Powder Technology, 2017, 305:1-11.
    [16]
    张亚蕊, 韩云龙, 钱付平, 等. 新型滤筒除尘器性能的数值模拟[J]. 过程工程学报, 2016, 16(1):48-54.
    [17]
    周福宝, 李建龙, 李世航, 等. 综掘工作面干式过滤除尘技术实验研究及实践[J].煤炭学报, 2017, 42(3):639-645.
    [18]
    陈路敏,钱付平,叶蒙蒙, 等. 脉冲喷吹清灰高湿粉尘剥落的数学模型研究[J]. 煤炭学报, 2019, 44(增刊2):683-690.
    [19]
    MAI R, LEIBOLD H, SEIFERT H, et al. Coupled pressure pulse (CPP) recleaning system for ceramic hot-gas filters with an integrated safety filter[J]. Chemical Engineering & Technology, 2010, 26(5):577-579.
    [20]
    栾鑫, 姬忠礼, 刘龙飞. 刚性过滤器脉冲反吹过程中滤管内动态压力特性[J]. 化工学报, 2016, 67(8):3452-3458.
    [21]
    LI J L, WANG P, WU D S, et al. Numerical study of opposing pulsed-jet cleaning for p leated filter cartridges[J]. Separation and Purification Technology, 2020, 234:116086.
    [22]
    颜翠平. 脉冲喷吹褶皱式滤筒的清灰效果及机理研究[D]. 合肥:中国科学技术大学, 2014.
    [23]
    巨敏, 张明星, 陈俊东, 等. 滤筒除尘器脉冲清灰动态分析[J]. 环境工程学报, 2013, 7(3):1091-1094.
    [24]
    叶青. 袋式除尘器过滤清灰过程流场特性的数值模拟研究[D]. 南昌:南昌大学, 2012.
    [25]
    余洪浪. 基于上部开口散射器的脉冲喷吹清灰特性研究[D]. 绵阳:西南科技大学, 2020.
    [26]
    SIEVERT J, LOFFLER F. Fabric cleaning in pulse-jet filters[J]. Chemical Engineering & Processing Process Intensification, 1989, 26(2):179-183.
    [27]
    李坦, 靳世平, 黄素逸, 等. 流场速度分布均匀性评价指标比较与应用研究[J]. 热力发电, 2013, 42(11):60-63.
    [28]
    刘东, 余洪浪, 王令, 等. 上部开口散射器提高脉冲喷吹清灰性能实验[J]. 环境工程, 2019, 37(8):138-142.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (151) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return