Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 39 Issue 5
Jan.  2022
Turn off MathJax
Article Contents
SU Ming-wei, ZHANG Wei-feng, ZHENG Run-he. DISTRIBUTION CHARACTERISTICS AND DIFFERENCE ANALYSIS OF PM2.5 BASED ON WAVELET ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 96-103. doi: 10.13205/j.hjgc.202105013
Citation: SU Ming-wei, ZHANG Wei-feng, ZHENG Run-he. DISTRIBUTION CHARACTERISTICS AND DIFFERENCE ANALYSIS OF PM2.5 BASED ON WAVELET ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 96-103. doi: 10.13205/j.hjgc.202105013

DISTRIBUTION CHARACTERISTICS AND DIFFERENCE ANALYSIS OF PM2.5 BASED ON WAVELET ANALYSIS

doi: 10.13205/j.hjgc.202105013
  • Received Date: 2020-08-19
    Available Online: 2022-01-17
  • To understand the characteristics and differences of PM2.5 concentration in the northwest inland and east coast, this paper used wavelet analysis and Spearman correlation analysis to compare the distribution characteristics and differences of PM2.5 concentration values in 12 major cities in winter and spring. The results showed that, affected by differences in geographic location and topography, the concentration of PM2.5 was significantly different in the northwest inland and east coastal cities. The results mainly manifested in:1) the distribution of PM2.5 in the northwest inland and the eastern coastal areas was significantly different in winter and spring. The east Coastal areas were better than the northwest inland areas, while the east coastal areas had relatively low excess rates. Urumqi and Xi'an accounted for a relatively high percentage of excesses; 2) Wavelet analysis showed that the northwest inland and the east coast possessed obvious differences in cycle, but the overall appearance occurred in winter (before 80 d); 3) The Spearman correlation coefficient had obvious distance attenuation, and the correlation coefficient weakened from the northwest inland to the coastal cities in the east; 4) The abrupt changes of PM2.5 concentration values in the east and northwest were significantly different on time scales. The overall abrupt changes in the northwestern inland areas appeared on the 2nd, 11th, 24th, 49th, and 70th day, and the eastern coastal areas appear on 2nd, 17th, 42th, 53th, 70th day.
  • loading
  • [1]
    朱彤,尚静,赵德峰. 大气复合污染及灰霾形成中非均相化学过程的作用[J]. 中国科学:化学, 2010,40(12):1731-1740.
    [2]
    李源,陈魁,孔君,等. 天津市PM2.5污染特征与来源解析[J]. 环境工程, 2019,37(11):132-137.
    [3]
    苗青青,姜楠,张瑞芹,等. 中原城市群典型城市秋冬季大气PM2.5污染特征及溯源[J/OL]. 环境科学,[2020-08-17]. https://doi.org/10.13227/j.hjkx.202005333.
    [4]
    王涛,王明悦,胡薇,等. 中国2018年PM2.5的空间分布特征:基于地理信息系统的研究[J]. 环境与职业医学, 2020,37(6):553-557.
    [5]
    韩婧,李元征,李锋. 2000-2015年中国PM2.5浓度时空分布特征及其城乡差异[J]. 生态学报, 2019,39(8):2954-2962.
    [6]
    CHEN L,GUO B,HUANG J S,et al. Assessing air-quality in Beijing-Tianjin-Hebei region:the method and mixed tales of PM2.5 and O3[J]. Atmospheric Environment, 2018,193(18):290-301.
    [7]
    王飞,韩业林,赵颖. 太原市大气颗粒物PM10和PM2.5多时间尺度变化规律研究[J]. 生态环境学报, 2017,26(9):1521-1528.
    [8]
    王振波,梁龙武,王旭静. 中国城市群地区PM2.5时空演变格局及其影响因素[J]. 地理学报, 2019,74(12):2614-2630.
    [9]
    王占山,李云婷,陈添,等. 2013年北京市PM2.5的时空分布[J]. 地理学报, 2015,70(1):110-120.
    [10]
    张亮林,潘竟虎. 中国PM2.5人口暴露风险时空格局[J]. 中国环境科学, 2020,40(1):1-12.
    [11]
    王勇,刘备,刘严萍. 基于小波变换的北京、上海等城市PM2.5浓度时空演化特征分析[J]. 灾害学, 2017,32(2):39-42.
    [12]
    唐玉翔,黄平,钱新明,等. 西安市PM2.5污染的时空分布[J]. 安全与环境学报, 2015,15(4):368-373.
    [13]
    姚青,蔡子颖,刘敬乐,等. 气象条件对2009-2018年天津地区PM2.5质量浓度的影响[J]. 环境科学学报, 2020,40(1):65-75.
    [14]
    陈莎,刘影影,李素梅,等. 京津冀典型城市PM2.5污染的健康风险及经济损失研究[J]. 安全与环境学报, 2020,20(3):1146-1153.
    [15]
    冯炎鹏,张军科,黄小娟,等. 成都夏冬季PM2.5中水溶性无机离子污染特征[J]. 环境科学, 2020,41(7):3012-3020.
    [16]
    黄小刚,邵天杰,赵景波,等. 长江经济带空气质量时空分布特征及影响因素的季节差异[J/OL]. 中国环境科学,[2020-08-17]. https://doi.org/10.19674/j.cnki.issn1000-6923.20191016.001.
    [17]
    易文利,朱婵园,郭婵,等. 陕西省冬春季PM2.5时空分布特征研究[J/OL]. 地球与环境,[2020-8-17]. https://doi.org/10.14050/j.cnki.1672-9250.2020.48.073.
    [18]
    依再提古丽·外力,王明力,杨建军,等. 2015-2018年乌鲁木齐市PM2.5及PM10

    时空分布特征[J/OL]. 环境科学研究,[2020-8-17]. https://doi.org/10.13198/j.issn.1001-6929. 2020.02.07.
    [19]
    李名升,任晓霞,于洋,等. 中国大陆城市PM2.5污染时空分布规律[J]. 中国环境科学, 2016,36(3):641-650.
    [20]
    郑永杰,王梅梅,孙萌,等. 齐齐哈尔市PM2.5与PM10污染趋势及相关性分析[J]. 中国环境监测, 2018,34(1):60-68.
    [21]
    朱媛媛,高愈霄,刘冰,等. 京津冀秋冬季PM2.5污染概况和预报结果评估[J]. 环境科学, 2019,40(12):5191-5201.
    [22]
    郭胜利,黄军,王希. 南京市大气颗粒物污染特征及影响因素分析[J]. 科学技术与工程, 2015,15(13):226-231.
    [23]
    孙春媛,李令军,赵文吉,等. 基于小波变换的北京市PM2.5时空分布特征及成因分析[J]. 生态环境学报, 2016,25(8):1343-1350.
    [24]
    王海鹏,张斌,刘祖涵,等. 基于小波变换的兰州市近十年空气污染指数变化[J]. 环境科学学报, 2011,31(5):1070-1076.
    [25]
    冯奇,吴胜军,杜耘,等. 基于小波的武汉市PM10空气污染指数时间序列分析[J]. 华中师范大学学报(自然科学版), 2010,44(4):678-685.
    [26]
    周杰,杨鹏,吕文生,等. 小波方差分析北京市PM2.5质量浓度序列周期特征[J]. 环境监测管理与技术, 2016,28(6):19-22.
    [27]
    陈柳,马广大. 小波分析在PM10浓度时间序列分析中的应用[J]. 环境工程, 2006,24(1):61-63.
    [28]
    马跃先,孙明明,张杰,等. 小波分析在郑州市供暖期PM2.5浓度相关性分析中的应用[J]. 环境工程学报, 2015,9(8):3960-3964.
    [29]
    唐玉翔,黄平,钱新明,等. 西安市PM2.5污染的时空分布[J]. 安全与环境学报, 2015,15(4):368-373.
    [30]
    张彬. 重庆市PM2.5与心脑血管疾病急诊人数相关性研究[J]. 职业卫生与病伤, 2020,35(3):176-181.
    [31]
    滕婉莹,杨浩峰,马龙. 乌鲁木齐市大气PM2.5和PM10与居民呼吸系统疾病急救人次的关系[J]. 环境与职业医学, 2020,37(6):594-598.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (169) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return