Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Yu-long, ZHANG Zhi-feng, ZHANG Li, ZHANG Zhe, QIN Lu, CHAI Guo-dong, ZHENG Xing, WANG Dong-qi. EFFECT OF INFLUENT CONDITIONS ON PERFORMANCE AND MICROORGANISMS IN THE SIDE-STREAM ACTIVATED SLUDGE HYDROLYSIS PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 146-151,158. doi: 10.13205/j.hjgc.202205021
Citation: ZHAO Wei, TIAN Yong-jing, XIA Jing, SUN Tian-tian, TANG Qi-wen. IMPACT OF BIOLEACHING WITH FAS+S0 ON EPS AND DEWATERABILITY OF SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 118-123. doi: 10.13205/j.hjgc.202105016

IMPACT OF BIOLEACHING WITH FAS+S0 ON EPS AND DEWATERABILITY OF SEWAGE SLUDGE

doi: 10.13205/j.hjgc.202105016
  • Received Date: 2020-08-20
    Available Online: 2022-01-17
  • To investigate the dewatering performance of sewage sludge and the relationship between dewaterability with protein (PN) and polysaccharide (PS) of extracellular polymers (EPS) in bioleaching process, in which ferrous ammonium sulfate (FAS) and sulfur powder (S0) were supplied as substrates, raw sludge was bioleached with 10% inoculum+(0, 2 g/L, 4 g/L, 6 g/L) FAS+(0 g/L, 2 g/L, 4 g/L, 6 g/L) S0. Meanwhile, the raw sludge and raw sludge with 10% inoculum were designed as control groups. Results showed that the best bioleaching process condition was 4 g/L FAS+2g/L S0 for 6 days, and then SRF and viscosity decreased by 83.11% and 65.74%, respectively. Both dissolved and bound PN and PS content in EPS changed with the bioleaching progress, which influenced the SRF and viscosity of sludge. It was determined that dissolved PS was negatively correlate with SRF and viscosity(R=-0.813、-0.813,P<0.05),suggesting that the content of dissolved PS was the main factor affecting the dewaterability of sludge. Subsequent experiments showed that more hydrophobic PS was produced together with the dissolved PS with the bioleaching progress, contributing to the improvement of dewatering performance of sludge.
  • [1]
    郭广慧,陈同斌,杨军,等.中国城市污泥重金属区域分布特征及变化趋势[J]. 环境科学学报, 2014,34(10):2455-2461.
    [2]
    GU T Y, RASTEGER S O, MOUSAVI S M, et al. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge[J]. Bioresource Technology, 2018,261:428-440.
    [3]
    MEHROTRA A, SREEKRISHNAN T R. Heavy metal bioleaching and sludgestabilization in a single-stage reactor using indigenous acidophilic heterotrophs[J]. Environmental Technology, 2017,38(21):1-16.
    [4]
    DENG X H, CHAI L Y, YANG Z H, et al. Bioleaching mechanism of heavymetals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1[J]. Journal of Hazardous Materials, 2013,248/249(15):107-114.
    [5]
    甘莉,刘贺琴,王清萍,等.氧化亚铁硫杆菌生物浸出污泥中的重金属离子[J]. 中国环境科学, 2014,34(10):2617-2623.
    [6]
    向少云,田永静,夏晶,等.生物沥滤法对剩余污泥中重金属及养分含量的影响[J].中国给水排水,2018,34(1):20-25.
    [7]
    ELISABETH NEYENS, JAN BAEYENS, RAF Dewil, et al. Ad-vanced sludge treatment affects extracellular polymericsubstances to improve activated sludge dewatering[J].Journal of Hazardous Materials, 2004, 106B:83-92.
    [8]
    HUO M B, ZHENG G Y, ZHOU L X. Enhancement of the dewaterability of sludge during bioleaching mainly controlled by microbial quantity change and the decrease of slime extracellular polymeric substances content[J]. Bioresource Technology, 2014,168:190-197.
    [9]
    DAI Q X, MA L P, REN N Q, et al. Investigation on extracellular polymeric substances, sludge flocs morphology, bound water release and dewatering performance of sewage sludge under pretreatment with modified phosphogypsum[J]. Water Research, 2018,142:337-346.
    [10]
    周俊,周立祥,黄焕忠,等.污泥胞外聚合物的提取方法及其对污泥脱水性能的影响[J]. 环境科学, 2013,34(7):2752-2757.
    [11]
    ZHEN G Y, LU X Q, LI Y Y, et al. Innovative combination of electrolysis and Fe(Ⅱ)-activatedpersulfate oxidation for improving the dewaterability of waste activated sludge[J]. Bioresource Technology, 2013, 136:654-663.
    [12]
    WANG X M, WANG X, YANG M H, et al. Sludge conditioning performance of polyaluminum, polyferric, and titanium xerogel coagulants[J]. Environmental Science, 2018,39(5):2274-2282.
    [13]
    夏晶,田永静,王骁,等.生物淋滤中硫粉对污泥EPS组分和脱水性的影响[J].中国环境科学,2019,39(2):619-624.
    [14]
    WINGENDER J, NEU T R, FLEMMING H C. Microbial extracellular polymeric substances, characterization, structure and function[M]. Springer Berlin Heidelberg, 1999,88(1):45-53.
    [15]
    王红武,李晓岩,赵庆祥.活性污泥的表面特性与其沉降脱水性能的关系[J]. 清华大学学报(自然科学版), 2004,44(6):766-769.
    [16]
    华玉妹,陈英旭,张少辉.污泥生物沥滤中硫细菌变化和胞外多聚物作用的研究[J]. 中国环境科学, 2011,31(5):795-802.
    [17]
    周立祥. 污泥生物沥浸处理技术及其工程应用[J]. 南京农业大学学报, 2012,35(5):154-166.
    [18]
    刘昌庚.基于生物淋滤的城市污泥调理技术[D]. 长沙:湖南大学,2010.
    [19]
    LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the Folin phenol reagent[J]. Journal of Biological Chemistry, 1951,193(1):265-275.
    [20]
    GAUDY A F. Colorimetric determination of protein and carbohydrate[J]. Industrial Water Wastes, 1962,7(1):17-22.
    [21]
    李金印. 胞外聚合物及其表面性质对活性污泥絮凝沉降性能的影响研究[D].重庆:重庆大学, 2008.
    [22]
    黄晓婷, 袁海平, 周熠鸣, 等. 基质投加量对生物调理改善污泥脱水性能的影响[J]. 环境科学学报, 2017,37(6):2137-2142.
    [23]
    CHEN Y G, YANG H Z, GU G W. Effect of acid and surfactant treatment on activated sludge dewatering and settling[J]. Water Research, 2001,35(11):2615-2620.
    [24]
    ZITA A,HERMANSSON M. Effects ofbacterial cell surface sllalctule and hydrophobicity on attachment to activated sludge flocs[J]. Applical and Environmental Microbiology,1997,63(3):1168-1170.
    [25]
    LIAO B Q, ALLEN D G, LEPPARD G G, et al. Interparticle interac-tion affecting the stability of sludge flocs[J].Journal of Colloid and Interface Science, 2002, 249:372-380.
    [26]
    DIGNAC M F, URBAIN V, RYBACKI D, et al. Chemical description of extracellular polymers:implication on activated sludge floc structure[J]. Water Science and Techology, 1998,38(8/9):45-53.
  • Relative Articles

    [1]ZHAO Yong, HAO Guizhen, XU Li, XIONG Xiaoying, ZHANG Xuanmo, WANG Jiawei. ENHANCED NITROGEN REMOVAL BY AEROBIC GRANULAR SLUDGE AND EVOLUTION OF MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 135-143. doi: 10.13205/j.hjgc.202407015
    [2]ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012
    [3]LI Jingnan, WANG Qunhui, LIANG Baorui, WANG Wanqing, LIU Junjie. EFFECTS OF GARDEN WASTE ON EMISSION REDUCTION AND MICROBIAL COMMUNITY IN COASTAL SALINE SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 95-101. doi: 10.13205/j.hjgc.202401013
    [4]HUANG Wenhui, GAO Jiaqi, LI Xiang, HUANG Yong, XU Peiling, YE Jiahong. EFFECT OF NITROGEN LOAD ON NOB INHIBITION IN PARTIAL NITROSATED ACTIVATED SLUDGE SYSTEM UNDER MAINSTREAM CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 25-32. doi: 10.13205/j.hjgc.202403003
    [5]ZHANG Chi, SHA Hongjü, WANG Chao, LÜ Ze, HU Xiaomin. MICROBIAL COMMUNITY STRUCTURE ENHANCEMENT BY ELECTRIC FIELD AT ROOM TEMPERATURE AND HIGH NITROGEN LOAD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 39-44. doi: 10.13205/j.hjgc.202305006
    [6]LI Wenbing, BI Jiangtao, LIU Peng, HUI Zhibing, SUN Quan. CORRELATION BETWEEN THE SUCCESSION OF MICROBIAL COMMUNITY STRUCTURE AND ENVIRONMENTAL FACTORS AND MATURITY OF CATTLE MANURE AEROBIC COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 69-77. doi: 10.13205/j.hjgc.202201011
    [7]YU Junxia, CHEN Shuangrong, LIU Lingyan, LI Yingmei, LU Yifeng, MA Lan. PURIFICATION EFFECT OF TOTAL NITROGEN IN LOW-POLLUTED WATER BY A COMPOSITE CONSTRUCTED WETLAND SYSTEM AND ITS MICROBIAL COMMUNITY STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 13-20. doi: 10.13205/j.hjgc.202201003
    [8]XIE Mingde, FENG Mei, TANG Yiming, YI Xiaoying, LIU Dan. ANALYSIS ON MICROBIAL COMMUNITY STRUCTURES AND DIVERSITY IN AGED REFUSE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 42-46. doi: 10.13205/j.hjgc.202202007
    [9]LIU Bin, HE Jie, LI Xueyan. CHARACTERISTICS OF SIMULTANEOUS TREATMENT OF NITROGEN AND PHOSPHORUS IN PYRITE BIOFILTER AND ITS MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 32-37,138. doi: 10.13205/j.hjgc.202203006
    [10]SONG Binxue, HE Yueling, JIA Linchun, CENG Lin, CHEN Hong, XUE Gang. Fe0 SUPPORTED MIXOTROPHIC DENITRIFICATION FOR GROUNDWATER TREATMENTS: PERFORMANCE AND POTENTIAL MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 22-30,54. doi: 10.13205/j.hjgc.202208003
    [11]ZHANG Meng, ZHAO Yani, ZHANG Liling, WU Jingya, LI Shuping, ZHU Guangcan, SUN Liwei. COMPARISON OF CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE IN SEWAGE TREATMENT PLANTS OF HIGH ALTITUDE AREA AND LOW ALTITUDE AREA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 66-73. doi: 10.13205/j.hjgc.202203011
    [12]HAN Ya-lin, WANG Fu-hao, WANG Qun, LI Ting, SHE Zong-lian. EFFECT OF OPERATIONAL MODE ON NITROGEN REMOVAL AND MICROBIAL CUMMUNITY IN PROCESS OF SIMULTANEOUS PARTIAL NITRIFICATION AND DENITRIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 51-57,17. doi: 10.13205/j.hjgc.202101007
    [13]GUO Yue-hong, WANG Jian-sheng, ZHANG Xue-hong, ZHANG Xing-feng, GAO Bo. EFFECTS OF HUMIC ACID ON CHROMIUM SPECIATION, MICROBIAL COMMUNITIES AND ENZYME ACTIVITIES IN RED SOIL TREATMENT SYSTEM PLANTED WITH LEERSIA HEXANDRA SWARTZ[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 234-242. doi: 10.13205/j.hjgc.202112035
    [14]XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026
    [15]LI Yong, YUAN Hui-zhou, KE Shui-zhou, ZHU Liang, LI Zhan-peng. EFFECTS OF MICROBIAL CARRIERS ON PERFORMANCE AND MICROBIAL COMMUNITY STRUCTURE OF MBBR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 100-106. doi: 10.13205/j.hjgc.202112015
    [16]CHEN Jin-yuan, LIU Xue-wen, LV Ju-feng, LV Bo-sheng, WEI Xiu-zhen. EFFECT OF BIOCHAR ON COMPOSITION OF SMP AND EPS IN ACTIVATED SLUDGE AND NITROGEN AND PHOSPHORUS REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 133-138,207. doi: 10.13205/j.hjgc.202009022
    [17]WANG Kun, KE Shui-zhou, YUAN Hui-zhou, ZHU Jia, LI Jia-wan. EFFECT OF AMMONIA-NITROGEN CONCENTRATION ON MICROBIAL COMMUNITY STRUCTURE IN A MBBR PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 119-125. doi: 10.13205/j.hjgc.202009020
    [18]YIN Ying, CHI Zi-fang, HUANG Hua-zheng, WANG Wen-jing. EFFECTS OF HYDROGEN AND NITROGEN ON ANAEROBIC METHANE DEGRADATION COURSE AND MICROBIAL DIVERSITY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 191-195. doi: 10.13205/j.hjgc.202005033
  • Cited by

    Periodical cited type(1)

    1. 王东琦,秦璐. 侧流强化生物除磷工艺研究进展. 水处理技术. 2025(02): 14-21 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.1 %FULLTEXT: 10.1 %META: 85.0 %META: 85.0 %PDF: 4.9 %PDF: 4.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.4 %其他: 13.4 %其他: 0.8 %其他: 0.8 %Gwynn Oak: 0.8 %Gwynn Oak: 0.8 %Malvern: 0.4 %Malvern: 0.4 %Nahant: 0.4 %Nahant: 0.4 %Pasadena: 1.2 %Pasadena: 1.2 %[]: 0.4 %[]: 0.4 %上海: 2.8 %上海: 2.8 %东莞: 0.4 %东莞: 0.4 %临汾: 0.4 %临汾: 0.4 %佛山: 1.6 %佛山: 1.6 %保定: 0.4 %保定: 0.4 %北京: 2.0 %北京: 2.0 %南京: 0.4 %南京: 0.4 %台州: 0.4 %台州: 0.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %圣地亚哥: 0.8 %圣地亚哥: 0.8 %天津: 0.8 %天津: 0.8 %宣城: 1.2 %宣城: 1.2 %密蘇里城: 0.4 %密蘇里城: 0.4 %山景城: 0.4 %山景城: 0.4 %巴黎: 0.8 %巴黎: 0.8 %常德: 0.4 %常德: 0.4 %广州: 0.8 %广州: 0.8 %张家口: 1.2 %张家口: 1.2 %徐州: 0.4 %徐州: 0.4 %成都: 1.6 %成都: 1.6 %扬州: 0.4 %扬州: 0.4 %拉斯维加斯: 0.4 %拉斯维加斯: 0.4 %无锡: 0.8 %无锡: 0.8 %昆明: 0.4 %昆明: 0.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.4 %朝阳: 0.4 %杭州: 2.0 %杭州: 2.0 %格兰特县: 1.2 %格兰特县: 1.2 %武汉: 1.2 %武汉: 1.2 %济南: 0.8 %济南: 0.8 %济源: 0.8 %济源: 0.8 %深圳: 0.4 %深圳: 0.4 %湖州: 0.8 %湖州: 0.8 %漯河: 2.0 %漯河: 2.0 %潍坊: 0.4 %潍坊: 0.4 %焦作: 0.4 %焦作: 0.4 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.8 %福州: 0.8 %芒廷维尤: 27.9 %芒廷维尤: 27.9 %芝加哥: 1.6 %芝加哥: 1.6 %蚌埠: 0.4 %蚌埠: 0.4 %衢州: 0.8 %衢州: 0.8 %西宁: 6.9 %西宁: 6.9 %西安: 2.4 %西安: 2.4 %贵阳: 0.8 %贵阳: 0.8 %运城: 3.2 %运城: 3.2 %遵义: 0.4 %遵义: 0.4 %郑州: 2.8 %郑州: 2.8 %鄂尔多斯: 0.8 %鄂尔多斯: 0.8 %重庆: 0.4 %重庆: 0.4 %长沙: 0.8 %长沙: 0.8 %长治: 0.4 %长治: 0.4 %马鞍山: 0.4 %马鞍山: 0.4 %其他其他Gwynn OakMalvernNahantPasadena[]上海东莞临汾佛山保定北京南京台州哈尔滨圣地亚哥天津宣城密蘇里城山景城巴黎常德广州张家口徐州成都扬州拉斯维加斯无锡昆明晋城朝阳杭州格兰特县武汉济南济源深圳湖州漯河潍坊焦作石家庄福州芒廷维尤芝加哥蚌埠衢州西宁西安贵阳运城遵义郑州鄂尔多斯重庆长沙长治马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (113) PDF downloads(5) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return