Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHOU Zhi-cai. EFFECT ASSESSMENT OF SPONGE CITY CONSTRUCTION IN THE INTERNATIONAL ECO-BUSINESS DISTRICT IN SONGJIANG DISTRICT IN SHANGHAI BASED ON SWMM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 167-173. doi: 10.13205/j.hjgc.202008028
Citation: LI Zhen, WANG Jun-zhang, SHEN Li-ming, ZHAO Jun-ji, SHI Peng-fei, WANG Jie, ZHU Tao. AN OVERVIEW OF COAL-TO-LIQUID TECHNOLOGY AND COMPREHENSIVE UTILIZATION OF COAL-TO-LIQUID RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 135-141,149. doi: 10.13205/j.hjgc.202105019

AN OVERVIEW OF COAL-TO-LIQUID TECHNOLOGY AND COMPREHENSIVE UTILIZATION OF COAL-TO-LIQUID RESIDUE

doi: 10.13205/j.hjgc.202105019
  • Received Date: 2021-01-04
    Available Online: 2022-01-17
  • In order to alleviate the risk caused by China's high dependence on oil import, the development of a coal-to-liquid process that converts coal into oil through scientific means is a practical mean. This article reviewed the four most common coal-to-liquid technologies in China, analyzed the advantages and disadvantages of the four coal-to-liquid technologies, and provided a basis for the research of coal-to-liquid technology. The coal-to-liquid residue was the main pollution product of the coal-to-liquid industry. This article also classified the residues produced by different coal-to-liquid processes, summarized their composition and physical and chemical properties, and selected the direct coal liquefaction residue system to explain the current utilization technology of coal direct liquefaction residues. The research progress mainly included four parts:combustion, pyrolysis, preparation of asphalt products and the other. It was suggested that the development trend of coal-to-liquid technology was to study the structure conversion process of coal, cheaper and more efficient catalysts and their catalytic principles, high-throughput reactors for catalyst separation, and product separation technology. Among the high-value utilization methods of coal-to-liquid residue, asphalt products and high-performance carbon materials had good economic prospects and research value.
  • [1]
    贾众杰,阿格茹.探讨煤制油加氢残渣的综合利用[J].云南化工,2020,47(10):25-26

    , 29.
    [2]
    张瑞,李峰,石磊,等.煤制油加氢残渣的综合利用研究[J].化学工程师,2015,29(2):33-35.
    [3]
    胡发亭,王学云,毛学锋,等.煤直接液化制油技术研究现状及展望[J].洁净煤技术,2020,26(1):99-109.
    [4]
    秦怡晨.煤制油工艺技术研究[J].山西化工,2020,40(3):37-38

    , 41.
    [5]
    高阳.煤制油液化化工工艺简述[J].山西化工,2020,40(2):28-30.
    [6]
    李克健,吴秀章,舒歌平.煤直接液化技术在中国的发展[J].洁净煤技术,2014,20(2):39-43.
    [7]
    曹永坤.甲醇制汽油、甲醇制烯烃技术进展及工业应用[J].煤化工,2010,38(4):25-27.
    [8]
    李碧峰.由甲醇制烯烃和汽油的技术进展[J].化工厂设计,1984(1):84-85.
    [9]
    BRUCE C F, ANTHONY C S, JOSHUA R S, et al. Process development and demonstration of coal and biomass indirect liquefaction to synthetic iso-paraffinic kerosene[J]. Fuel Processing Technology, 2011, 92(10):1939-1945.
    [10]
    崔普选.煤基甲醇制烯烃工艺技术发展现状[J].现代化工,2020,40(4):5-9.
    [11]
    吴春梅.我国煤基甲醇制烯烃技术进展[J].化工设计通讯,2019,45(2):13, 71.
    [12]
    胡艳. 煤基甲醇制高性能清洁汽油组分研究与应用[D].上海:华东理工大学,2018.
    [13]
    苏航.煤基甲醇制对二甲苯工艺过程的多目标优化和评价研究[D].锦州:渤海大学,2020.
    [14]
    任帅,杨军,郭生飞,等.煤焦油加氢制轻质油品技术进展[J].广州化工,2020,48(14):22-24.
    [15]
    永成.煤焦油加氢制燃料油品[J].化工管理,2019(29):194-195.
    [16]
    崔文岗,李冬,樊安,等.低温煤焦油加氢制备清洁燃料油品中试试验研究[J].化工进展,2018,37(6):2192-2202.
    [17]
    刘世雄.悬浮床煤焦油加氢装置加热炉的技术改造与应用[J].化学工程与装备,2019(12):165-166.
    [18]
    罗万江,兰新哲,宋永辉,等.煤直接液化残渣的利用研究进展[J].材料导报,2013,27(11):153-157.
    [19]
    谷小会.煤直接液化残渣的性质及利用现状[J].洁净煤技术,2012,18(3):63-66.
    [20]
    刘子梁,孙英杰,李卫华,等. 媒间接液化工艺中气化炉渣综合利用进展[J].洁净煤技术,2016,22(1):118-123.
    [21]
    张瑞,李峰,石磊,等.煤制油加氢残渣的综合利用研究[J].化学工程师,2015,29(2):33-35.
    [22]
    贾众杰,阿格茹.探讨煤制油加氢残渣的综合利用[J].云南化工,2020,47(10):25-26

    , 29.
    [23]
    王宁,刘刚,高宝宝.煤化工技术发展现状及其新型技术研究[J].智能城市,2020,6(11):122-123.
    [24]
    楚希杰,赵丽红,李文,等.神华煤及其直接液化残渣热解动力学试验研究[J].煤炭科学技术,2010,38(5):121-124.
    [25]
    方磊,周俊虎,周志军, 等.煤液化残渣与褐煤混煤燃烧特性的实验研究[J].燃料化学学报,2006,34(2):245-248.
    [26]
    董子平. 煤液化残渣的污染特性和焚烧特征研究[D].长沙:湖南农业大学,2015.
    [27]
    周俊虎,方磊,程军,等.煤液化残渣硫析出动态特性的研究[J].动力工程,2005,25(3):412-415.
    [28]
    许邦,初茉,张慧慧, 等.煤直接液化残渣热解研究现状[J].洁净煤技术,2013,19(4):81-84.
    [29]
    李凯. 低变质煤与神华煤直接液化残渣共热解特性研究[D].西安:西北大学,2019.
    [30]
    李丽丽. 神东煤直接液化残渣与煤共热解相互作用研究[D].山西:太原理工大学,2016.
    [31]
    LI K, MA X, HE R, et al. Co-pyrolysis characteristics and interaction route between low-rank coals and Shenhua coal direct liquefaction residue[J]. Chinese Journal of Chemical Engineering, 2019.
    [32]
    位艳宾. 煤液化残渣的组成结构分析和催化加氢[D].徐州:中国矿业大学,2013.
    [33]
    陈茂山,要辉,王洪学,等.煤直接液化残渣制备高附加值产品的探索研究[J].中国煤炭,2020,46(5):74-80.
    [34]
    QIN F F, JIANG W, NI G S, et al. From coal-heavy oil co-refining residue to asphaltene-based functional carbon materials[J]. ACS Sustainable Chemistry & Engineering, 2019.
    [35]
    刘国库,胡威威,黄动昊,等.煤直接液化残渣提纯工艺研究[J].河南科技,2020(22):73.
    [36]
    宋真真. 神华煤直接液化残渣的萃取组分及模型化合物改性石油沥青[D].西安:西北大学,2017.
    [37]
    何亮. 煤液化残渣复合改性沥青制备及其性能研究[D]. 西安:长安大学, 2013.
    [38]
    毛海臻. 煤制油渣改性沥青及其混合料技术性能研究与应用[D].郑州:郑州大学,2019.
    [39]
    LU H, PENG B Z, GE Z F, et al. The viscosity and crystallization behavior of slag from co-gasification of coal and extraction residue from direct coal liquefaction residue at high temperatures[J]. Fuel, 2021,285:119119.
    [40]
    CAO X, PENG B Z, KONG L X, et al. Flow properties of ash and slag under co-gasification of coal and extract residue of direct coal liquefaction residue[J]. Fuel, 2020, 264:116850.1-116850.9.
    [41]
    LIU X,ZHOU Z J, HU Q J, et al. Experimental study on Co-gasification of coal liquefaction residue and petroleum coke[J]. Energy & Fuels,2011,25(8):3377-3381.
    [42]
    REN L W, WEI R D, ZHU T C. Co-gasification reactivity of petroleum coke with coal and coal liquefaction residue[J]. Journal of the Energy Institute, 2020, 93(1):436-441.
    [43]
    WANG Y G, NIU Z S, SHEN J, et al. Extraction of direct coal liquefaction residue using dipropylamine as a CO2-triggered switchable solvent[J]. Fuel Processing Technology,2017,159:27-30.
  • Relative Articles

    [1]ZHAO Shuiqian, DUAN Nina, TAN Xue jun, ZHANG Chen. ECONOMIC ANALYSIS ON “ANAEROBIC DIGESTION+LAND USE” TREATMENT AND DISPOSAL TECHNICAL ROUTE FOR MUNICIPAL SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 1-9. doi: 10.13205/j.hjgc.202402001
    [2]FU Wenyu, SUN Wenqiang, WANG Lianyong. ADVANCES IN RESOURCE UTILIZATION TECHNOLOGIES FOR COAL GASIFICATION SLAG[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 319-328. doi: 10.13205/j.hjgc.202312040
    [3]CHENG Hongsheng, DING Jingtao, MENG Haibo, SHEN Yujun, ZHOU Haibin, SONG Liqiu, ZHANG Xi, XU Pengxiang, ZHANG Pengyue, WANG Xinyu, LI Ran, WANG Juan, ZHANG Ying, YAN Haipeng. ANALYSIS ON WHOLE CHAIN TECHNOLOGY OF LIVESTOCK MANURE RESOURCE UTILIZATION IN THE YANGTZE RIVER BASIN PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 240-247. doi: DOI:10.13205/j.hjgc.202207033
    [4]SUN Fawei, WANG Jiajia, CHEN Weiping, YANG Yang, LIU Wei, WANG Tianqi. ENGINEERING APPLICATION OF SAFE UTILIZATION TECHNOLOGY OF CADMIUM POLLUTED WHEAT FIELD IN SEWAGE IRRIGATION AREAS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 134-140. doi: 10.13205/j.hjgc.202210018
    [5]XING Xiu-jun, WU Yue-dong. REVIEW ON DEVELOPMENT ON THE UTILIZATION OF ALUMINUM DROSS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 148-152. doi: 10.13205/j.hjgc.202103021
    [6]WU Fan, JIANG Hao, LI Ye-qing. ADVANCEMENTS IN PRODUCING MEDIUM CHAIN CARBOXYLIC ACIDS VIA ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 150-155,216. doi: 10.13205/j.hjgc.202108021
    [7]WU Yue-dong, PENG Ben, WU Long, LV Wen, ZHANG Guo-hua. REVIEW ON GLOBAL DEVELOPMENT OF TREATMENT AND UTILIZATION OF STEEL SLAG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 161-165. doi: 10.13205/j.hjgc.202101025
    [8]LIU Tong-li, ZHAO Li-xin, MENG Hai-bo, YAO Zong-lu, ZHANG Xi-rui, HUO Li-li. RESEARCH AND OPTIMIZATION OF EVALUATION METHODS FOR STRAW ENERGY UTILIZATION TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 195-200. doi: 10.13205/j.hjgc.202008032
  • Cited by

    Periodical cited type(10)

    1. 张庆民,赵庚润,刘晨宇. 典型系统泵站放江对城市河道水质弹性的影响分析. 四川环境. 2025(01): 16-23 .
    2. 折帅,董高明,罗黑龙,张海洋,陆丽花,刘子扬. 基于SWMM模型的产业园区LID设施方案评估研究. 施工技术(中英文). 2025(04): 151-156+166 .
    3. 程新月,王昊,李智,周晋军. 基于OPUT的城市LID设施防涝布设方法. 清华大学学报(自然科学版). 2024(04): 638-648 .
    4. 张惠,黄志金,张庆民. 基于数值模拟的雨水泵站放江污染控制研究. 四川环境. 2023(06): 8-15 .
    5. 王二松,宫永伟,周国华. 基于SWMM的天津市某海绵型建筑小区径流水量水质效果模拟分析. 环境工程. 2023(12): 48-53+115 . 本站查看
    6. 戎贵文,甘丹妮,李姗姗,孙浩淼,王莉莉. 不同LID设施的面积比例优选及径流污染控制效果. 水资源保护. 2022(03): 168-173+204 .
    7. 解超,王思思,吕彬. 基于LCA的北京市透水水泥混凝土路面的环境影响分析. 环境工程. 2022(09): 118-125 . 本站查看
    8. 靳伟,赵军伟,孙健,黄鹏程. 山区河流倒灌引发管网溢流洪水数值模拟研究. 中国农村水利水电. 2022(11): 77-82 .
    9. 胥瑞晨,逄勇,胡祉冰. 1990-2019年江苏片区入太湖水量变化及原因分析. 湖泊科学. 2021(03): 797-805 .
    10. 纪亚星,同玉,侯精明,苏锋,杨霄,吕鹏,李东来,石佳. 西咸新区海绵城市建设对沣河洪水特性影响模拟研究. 水资源与水工程学报. 2021(02): 50-57 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.4 %FULLTEXT: 9.4 %META: 87.9 %META: 87.9 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.5 %其他: 15.5 %[]: 0.3 %[]: 0.3 %上海: 1.6 %上海: 1.6 %东莞: 2.1 %东莞: 2.1 %临汾: 0.3 %临汾: 0.3 %临沂: 0.3 %临沂: 0.3 %乌兰察布: 0.5 %乌兰察布: 0.5 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %保定: 0.8 %保定: 0.8 %兰州: 0.3 %兰州: 0.3 %北京: 9.1 %北京: 9.1 %十堰: 0.3 %十堰: 0.3 %南京: 0.3 %南京: 0.3 %南宁: 0.8 %南宁: 0.8 %南通: 0.3 %南通: 0.3 %台州: 0.5 %台州: 0.5 %呼和浩特: 1.6 %呼和浩特: 1.6 %唐山: 0.5 %唐山: 0.5 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.8 %大连: 0.8 %天津: 1.3 %天津: 1.3 %太原: 1.6 %太原: 1.6 %安康: 0.8 %安康: 0.8 %宜昌: 0.3 %宜昌: 0.3 %宜春: 0.3 %宜春: 0.3 %巴彦淖尔: 0.3 %巴彦淖尔: 0.3 %常德: 0.3 %常德: 0.3 %广州: 0.3 %广州: 0.3 %开封: 0.3 %开封: 0.3 %弗吉: 0.3 %弗吉: 0.3 %张家口: 1.9 %张家口: 1.9 %徐州: 1.1 %徐州: 1.1 %成都: 0.5 %成都: 0.5 %抚顺: 0.3 %抚顺: 0.3 %无锡: 0.3 %无锡: 0.3 %昆明: 1.9 %昆明: 1.9 %晋城: 0.8 %晋城: 0.8 %景德镇: 0.8 %景德镇: 0.8 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.1 %杭州: 1.1 %枣庄: 0.3 %枣庄: 0.3 %榆林: 0.5 %榆林: 0.5 %武汉: 2.1 %武汉: 2.1 %济南: 0.3 %济南: 0.3 %济源: 0.5 %济源: 0.5 %温州: 0.3 %温州: 0.3 %渭南: 0.3 %渭南: 0.3 %湖州: 0.5 %湖州: 0.5 %漯河: 1.1 %漯河: 1.1 %漳州: 1.3 %漳州: 1.3 %焦作: 0.3 %焦作: 0.3 %珠海: 0.3 %珠海: 0.3 %盐城: 0.3 %盐城: 0.3 %石家庄: 0.8 %石家庄: 0.8 %舟山: 0.3 %舟山: 0.3 %芒廷维尤: 14.5 %芒廷维尤: 14.5 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 1.1 %苏州: 1.1 %茂名: 0.5 %茂名: 0.5 %西宁: 6.7 %西宁: 6.7 %西安: 5.9 %西安: 5.9 %运城: 2.9 %运城: 2.9 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.5 %郑州: 0.5 %鄂尔多斯: 2.1 %鄂尔多斯: 2.1 %重庆: 0.3 %重庆: 0.3 %金华: 1.3 %金华: 1.3 %银川: 0.8 %银川: 0.8 %镇江: 0.3 %镇江: 0.3 %长治: 0.3 %长治: 0.3 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.3 %鞍山: 0.3 %鹤岗: 0.5 %鹤岗: 0.5 %其他[]上海东莞临汾临沂乌兰察布乌鲁木齐保定兰州北京十堰南京南宁南通台州呼和浩特唐山嘉兴大连天津太原安康宜昌宜春巴彦淖尔常德广州开封弗吉张家口徐州成都抚顺无锡昆明晋城景德镇朝阳杭州枣庄榆林武汉济南济源温州渭南湖州漯河漳州焦作珠海盐城石家庄舟山芒廷维尤芝加哥苏州茂名西宁西安运城遵义邯郸郑州鄂尔多斯重庆金华银川镇江长治青岛鞍山鹤岗

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (328) PDF downloads(12) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return