Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LENG Guo-qin, TAO Tian-yi, YANG Yi-fan, CHEN Bo-li, SUN Zhi, HUANG Zhao-hui. INDIUM RECOVERY PROCESSES DEVELOPMENT FROM VARIOUS In-CONTAINING WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 142-149. doi: 10.13205/j.hjgc.202105020
Citation: LENG Guo-qin, TAO Tian-yi, YANG Yi-fan, CHEN Bo-li, SUN Zhi, HUANG Zhao-hui. INDIUM RECOVERY PROCESSES DEVELOPMENT FROM VARIOUS In-CONTAINING WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 142-149. doi: 10.13205/j.hjgc.202105020

INDIUM RECOVERY PROCESSES DEVELOPMENT FROM VARIOUS In-CONTAINING WASTE

doi: 10.13205/j.hjgc.202105020
  • Received Date: 2020-07-29
    Available Online: 2022-01-17
  • Indium is a rare and dispersed metal, which has been widely used in military, national defense, energy, electronic industry, medical and other fields. The reserved content of indium on earth is one sixth of that of gold. With the development of science and technology, the application field of indium is expanding and the demand of indium is increasing. The rarity and importance of indium promoted the development of research on the recovery of secondary-indium from e-waste. This paper reviewed the processes and principles of secondary-indium recovery from different kinds of indium-containing e-wastes, and the technological development bottlenecks and prospects of different recovery procedures were also proposed.
  • [1]
    唐武军. 浅论中国铟工业的现状及其发展思路[J]. 中国金属通报,2008(25):9-11.
    [2]
    AM, 2016c. The Use and Application of Indium. Available at. Asian Metal. http://baike. asianmetal.cn/metal/in/application.shtml.
    [3]
    AM, 2016a. The Distribution and Production of Indium Resources. Available at. Asian Metal. http://baike.asianmetal.cn/metal/in/resources&production.shtml.
    [4]
    俞小花, 谢刚. 有色冶金过程中铟的回收[J]. 有色金属(冶炼部分),2006(1):37-39.
    [5]
    伍赠玲. 铟的资源、应用与分离回收技术研究进展[J]. 铜业工程, 2011(1):25-30.
    [6]
    周智华, 莫红兵, 徐国荣,等. 稀散金属铟富集与回收技术的研究进展[J]. 有色金属,2005(1):73-78,82.
    [7]
    ZHANG K H, LI B, WU Y F, et al. Recycling of indium from waste LCD:a promising non-crushing leaching with the aid of ultrasonic wave[J]. Waste Management,2017,64:236-243.
    [8]
    FERELLA F, BELARDI G, MARSILII A, et al. Separation and recovery of glass, plastic and indium from spent LCD panels[J]. Waste Management,2017,60:569-581.
    [9]
    冯同春, 杨斌, 刘大春,等. 铟的生产技术进展及产业现状[J]. 冶金丛刊,2007(2):42-46.
    [10]
    GUPTA B, MUDHAR N, SINGH I. Separations and recovery of indium and gallium using bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272)[J]. Separation & Purification Technology,2007,57(2):294-303.
    [11]
    LIN S, MAO J, CHEN W, et al. Indium in mainland China:Insights into use, trade, and efficiency from the substance flow analysis[J]. Resources, Conservation & Recycling,2019,149:312-321.
    [12]
    WANG H G, GU Y F, WU Y F, et al. An evaluation of the potential yield of indium recycled from end-of-life LCDs:a case study in China[J]. Waste Management,2015,46:480-487.
    [13]
    CHOI C H, CAO J J, ZHAO F. System dynamics modeling of indium material flows under wide deployment of clean energy technologies. Resources Conservation and Recycling. 2016,114:59-71.
    [14]
    侬健桃, 黄瀚. ITO废靶回收再生技术[J]. 中国资源综合利用,2005(2):17-19.
    [15]
    阮久莉, 郭玉文, 乔琦. 废液晶显示器资源化技术进展及问题与对策[J]. 环境科学与技术,2016,39(1):38-43.
    [16]
    王瑞雪, 马恩, 王艳萍, 等. 废弃液晶面板中铟回收的研究现状及展望[J]. 有色金属(冶炼部分),2019(9):38-44.
    [17]
    LEE C H, JEONG M K, KILICASLAN M F, et al. Recovery of indium from used LCD panel by a time efficient and environmentally sound method assisted HEBM[J]. Waste Management,2013,33(3):730-734.
    [18]
    DENBAARS S P, FEEZELL D, KELCHNEr K, et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays[J]. Acta Materialia,2013,61(3):945-951.
    [19]
    ZHAN L, WANG Z Y, ZHANG Y L, et al. Recycling of metals (Ga, In, As and Ag from waste light-emitting diodes in sub/supercritical ethanol[J]. Resources, Conservation and Recycling,2020,155:104695.
    [20]
    马保中, 王成彦, 陈永强, 等. 从铜铟镓硒太阳能薄膜电池废料中回收铜铟镓硒的方法[P]:中国, CN108359802A. 2018-08-03.
    [21]
    刘军飞, 高永涛, 王冠, 等. 一种铜铟镓硒物料的回收方法[P]:中国, CN106987720A. 2017-07-28.
    [22]
    马保中, 王成彦, 陈永强, 等. 从铜铟镓硒废电池芯片中回收有价金属的方法[P]:中国, CN108425017A. 2018-08-21.
    [23]
    刘家祥, 甘勇, 张艳. 利用ITO废靶材回收金属铟[J]. 稀有金属,2004,28(5):947-950.
    [24]
    LØVIK A N, RESTREPO E, MVLLER D B. The global anthropogenic gallium system:determinants of demand, supply and efficiency improvements[J]. Environmental Science & Technology,2015,49(9):5704-5712.
    [25]
    卢兰兰, 毕冬勤, 刘壮, 等. 光伏太阳能电池生产过程中的污染问题[J]. 中国科学(化学),2013,43(6):687-703.
    [26]
    WONG C S C, DUZGOREN-AYDIN N S, AYDIN A, et al. Sources and trends of environmental mercury emissions in Asia[J]. Science of the Total Environment,2006,368(2/3):649-662.
    [27]
    吴鸿铖. 废弃液晶面板中铟材料的微波氯化回收及玻璃基板资源化再利用研究[D]. 上海:上海第二工业大学,2019.
    [28]
    ZHAN L, XIA F F, XIA Y H, et al. Recycle Gallium and Arsenic from GaAs-Based E-Wastes via Pyrolysis-Vacuum Metallurgy Separation:theory and Feasibility[J]. ACS Sustainable Chemistry & Engineering,2018,6(1):1336-1342.
    [29]
    ZHAN L, XIA F F, YE Q Y, et al. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes[J]. Journal of Hazardous Materials,2015,299(15):388-394.
    [30]
    BOSSCHE A V D, VEREYCKEN W, HOOGERSTRAETE T V, et al. Recovery of gallium, indium, and arsenic from semiconductors using tribromide ionic liquids[J]. ACS Sustainable Chemistry & Engineering,2019,7(17):14451-14459.
    [31]
    谭明亮, 李胜春, 潘勇进, 等.铜铟镓硒物料回收方法[P]:中国, CN108728655A. 2018-11-02.
    [32]
    FANG S, TAO T Y, CAO H B, et al. Selective recovery of gallium (indium) from metal organic chemical vapor deposition dust:a sustainable process[J]. ACS Sustainable Chemistry & Engineering,2019,7(10):9646-9654.
    [33]
    马保中, 王成彦, 陈永强, 等. 从CIGS太阳能薄膜电池腔室废料中回收有价金属的方法[P]:中国, CN108425016A. 2018-08-21.
    [34]
    LI Y H, LIU Z H, LI Q H, et al. Recovery of indium from used indium-tin oxide (ITO) targets[J]. Hydrometallurgy,2011, 105(3/4):207-212.
    [35]
    GABRIEL A P, KASPER A C, VEIT H M, et al. Acid leaching of indium from the screens of obsolete LCD monitors[J]. Journal of Environmental Chemical Engineering,2020,8(3):103758.
    [36]
    CAO Y, LI F, LI G M, et al. Leaching and purification of indium from waste liquid crystal display panel after hydrothermal pretreatment:optimum conditions determination and kinetic analysis[J]. Waste Management,2020,102:635-644.
    [37]
    SONG Q M, ZHANG L G, XU Z M. Indium recovery from In-Sn-Cu-Al mixed system of waste liquid crystal display panels via acid leaching and two-step electrodeposition[J]. Journal of hazardous materials,2020,381:120973.
    [38]
    陆静蓉. 废液晶显示器中铟的回收及深加工[D]. 常州:江苏理工学院,2019.
    [39]
    DHIMAN S, GUPTA B. Cyphos IL 104 assisted extraction of indium and recycling of indium, tin and zinc from discarded LCD screen[J]. Separation and Purification Technology,2020,237:116407.
    [40]
    李严辉, 张欣, 杨永峰, 等. ITO废靶中铟的回收[J]. 中国稀土学报,2002,20(1):256-258.
    [41]
    ASSEFI M, MAROUFI S, NEKOUEI R K, et al. Selective recovery of indium from scrap LCD panels using macroporous resins[J]. Journal of Cleaner Production,2018,180(10):814-822.
    [42]
    ITOH S, MARUYAMA K. Recoveries of metallic indium and tin from ITO by means of pyrometallurgy[J]. High Temperature Materials and Processes,2011,30(4/5):317-322.
    [43]
    HE Y X, MA E, XU Z M. Recycling indium from waste liquid crystal display panel by vacuum carbon-reduction[J]. Journal of Hazardous Materials,2014,268(15):185-190.
    [44]
    WANG R X, HOU Y Q, XU Z M. In-situ reaction for recycling indium from waste liquid crystal display panels by vaccum reduction with pyrolytic carbon as reductant[J]. Waste Management,2019,85:538-547.
    [45]
    刘欢, 华中胜, 何几文, 等. 废弃氧化铟锡中铟的回收技术综述[J]. 材料导报,2018,32(11):1916-1923.
    [46]
    MA E, XU Z M. Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels[J]. Journal of Hazardous Materials,2013,263:610-617.
    [47]
    PARK K S, SATO W, GRAUSE G, et al. Recovery of indium from In2O3 and liquid crystal display powder via a chloride volatilization process using polyvinyl chloride[J]. Thermochimica Acta,2009,493(1):105-108.
    [48]
    李胜春, 王为振, 潘勇进, 等. 从CIGS废料中综合回收硒铜铟镓[J]. 矿冶,2019,28(4):131-134.
    [49]
    谭明亮, 李胜春, 潘勇进,等. 一种铜铟镓硒废料的回收方法[P]:中国, CN108754435A. 2018-11-06.
    [50]
    于丽敏, 蒋文全, 傅钟臻,等. 铟电解精炼提纯方法的研究[J]. 材料导报, 2013, 27(4):16-19.
    [51]
    CIRO E, DELL'ERA A, PASQUALI M, et al. Indium electrowinning study from sulfate aqueous solution using different metal cathodes[J]. Journal of Environmental Chemical Engineering,2020,8(2):103688.
    [52]
    张丁川, 邓勇, 袁聪聪, 等. 粗铟真空蒸馏多级冷凝法提纯的实验研究[J]. 真空科学与技术学报,2017,37(1):94-99.
    [53]
    李贻成, 刘越, 章长生, 等. 区域熔炼法制备高纯铟的研究[J]. 矿冶工程, 2014, 34(2):104.
    [54]
    ZHOU Z H, RUAN J M, MO H B. Preparation of 6N high-purity indium by method of physical-chemical purification and electrorefining[J]. Journal of Materials Science,2005,40(24):6529-6533.
    [55]
    李情. 区域熔炼提纯铟及仿真模拟[D]. 桂林:桂林理工大学,2018.
    [56]
    卢兴伟, 彭巨擘, 伍美珍, 等. 电解精炼法制备高纯铟[J]. 矿冶, 2018, 27(6):59-62.
    [57]
    JIANG W L, DENG Y, XU B Q, et al. Application of vacuum distillation in refining crude indium[J].Rare Metals,2013,32(6):627-631.
  • Relative Articles

    [1]LE Jihang, WANG Wenlong, WU Qianyuan, CHEN Zhuo, WU Yinhu, JIA Haifeng, LIU Fanghua, WANG Fang, HU Hongying. Quality and risk characteristics of effluent from wastewater treatment plants in central area of Luzhou[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 135-143. doi: 10.13205/j.hjgc.202501015
    [2]ZHANG Li, HE Shanshan, ZHEN Xianghua, XIE Pengchao, WAN Nianhong, LIU Haiyan. ORGANIC EMERGING CONTAMINANTS REMOVAL PROCESS IN WASTEWATER TREATMENT PLANTS AND PROSPECT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 15-24. doi: 10.13205/j.hjgc.202407002
    [3]XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
    [4]LI Yunong, WEN Donghui. IMPACTS OF WASTEWATER TREATMENT PLANTS EFFLUENT ON MICROBIAL COMMUNITY OF RECEIVING WATER BODIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 167-179. doi: 10.13205/j.hjgc.202409016
    [5]LI Feifei, SU Zhiguo, CAO Feng, MU Qinglin, HUANG Bei, CHEN Lüjun, WEN Donghui. CONTRIBUTION OF WASTEWATER DISCHARGE FROM SEWAGE TREATMENT PLANTS TO ANTIBIOTIC POLLUTION IN COASTAL WATER: A CASE STUDY OF HANGZHOU BAY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 1-8. doi: 10.13205/j.hjgc.202404001
    [6]LIU Yuxin, ZENG Lingwu, FANG Zheng, SUN Dezhi. COMPREHENSIVE PERFORMANCE EVALUATION OF URBAN WASTEWATER TREATMENT PLANTS IN THE UPPER AND MIDDLE REACHES OF THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 34-42. doi: 10.13205/j.hjgc.202412005
    [7]WANG Xiaoyan, LIANG Meisheng, ZHANG Tong, CHEN Xi, LI Long. IN-SITU PREPARATION OF Cu/Al MODIFIED MCM-41 MOLECULAR SIEVE CATALYST AND ITS DEOXYGENATION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 192-200. doi: 10.13205/j.hjgc.202307026
    [8]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [9]XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022
    [10]LIU Sixuan, LI Yiping, ZHU Ya, WEI Yao, LI Ronghui, WANG Can, CHEN Yu, PENG Yanli, LIANG Dan. INFLUENCE OF WATER LEVEL DESCENDING OF LAYERED RESERVOIRS ON WATER QUALITY CHARACTERISTICS IN SOUTH CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 179-186,194. doi: 10.13205/j.hjgc.202305024
    [11]ZHANG Qi, WANG Ya'e, LI Jie, XIE Huina, LI Yuanyi. EFFECT OF DISSOLVED OXYGEN ON CORROSION OF SPONGE IRON IN BIOLOGICAL SPONGE IRON SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 60-65. doi: 10.13205/j.hjgc.202302009
    [12]YU Huaixing, YUAN Ding, HE Zihao. APPLICATION OF SHORT-RANGE PRECISION AERATION AND INTELLIGENT CONTROL SYSTEM IN SEWAGE TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 165-171. doi: 10.13205/j.hjgc.202311026
    [13]MENG Xiaojun, HAN Yong, HUANG Zhigui, GONG Xiaosong. CHALLENGES AND SOLUTIONS OF ANAMMOX IN MAINSTREAM WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 203-214. doi: 10.13205/j.hjgc.202210027
    [14]LI Wen-gang, SUN Yao-sheng, YAO Qiang, CHEN Fang, LIU Jing-yi. REVIEW ON POLLUTION STATUS AND ADVANCED TREATMENT TECHNOLOGIES OF EMERGING ORGANIC POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 77-87. doi: 10.13205/j.hjgc.202108010
    [15]HE Yuan-pu, FAN Hai-tao, LIU Guo-hua, QI Lu, XU Xiang-long, SHAO Yu-ting, WANG Hong-chen. STATUS AND TREND OF AERATION CONTROL STRATEGY DURING BIOLOGICAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 34-41,121. doi: 10.13205/j.hjgc.202106006
    [16]YU Yong, YU Sheng-hua, CHEN Da-gang. PRACTICE AND REFLECTION ON CLEAN EMISSION TECHNOLOGY TRANSFORMATION OF URBAN SEWAGE TREATMENT PLANTS IN ZHEJIANG PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 19-24. doi: 10.13205/j.hjgc.202007003
    [17]SHEN Jie, JIN Wei. REVIEW ON EFFECT OF URBAN WASTEWATER TREATMENT PLANT EFFLUENT ON RECEIVING WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 92-98,115. doi: 10.13205/j.hjgc.202003016
    [18]SHAN Wei, WANG Yan, ZHENG Kai-kai, LI Ji. TECHNOLOGY COMPARISON AND ANALYSIS ON COD REMOVAL UPGRADING OF WASTEWATER TREATMENT PLANTS FOR HIGH PROPORTION OF INDUSTRY WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 32-37,24. doi: 10.13205/j.hjgc.202007005
    [20]INFLUENCES OF DO AND AERATION TIME ON DENITRIFICATION PERFORMANCE OF AEROBIC DENITRIFYING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 62-64. doi: 10.13205/j.hjgc.201412010
  • Cited by

    Periodical cited type(9)

    1. 窦娜莎,孙治国,付友先,刘克琼,盛祥涛,杜欣然,牛亚婷,卞荣星,赵旭. 北方某渗滤液生化处理系统水质变化特征及节能降耗对策研究. 山东化工. 2025(02): 267-271 .
    2. 肖梅. 基于神经网络的污水处理鼓风机曝气控制方法. 自动化与仪器仪表. 2025(02): 116-120 .
    3. 于金旗,孙磊,刘然彬,薛松,杨童,张鹤清. 污水处理厂减污降碳技术探讨. 水处理技术. 2024(04): 18-25 .
    4. 王兴斌. 城镇污水处理厂碳减排技术研究和应用. 绿色矿冶. 2024(03): 88-93+98 .
    5. 丁万杰,刘钊,王孝红. 石化废水处理溶解氧浓度优化控制研究进展. 现代化工. 2024(S1): 16-20 .
    6. 龚洁,郝森舰,芦川,冯立辉,邹曦,朱利明. 苦草-附着生物复合系统对水体磺胺降解的贡献评估. 水生态学杂志. 2023(05): 142-148 .
    7. 朱文秀. 污水处理中技术创新与节能降耗研究. 科技创新与应用. 2022(27): 174-177 .
    8. 高新磊,邱颉,黄睿,房睿. 精准曝气技术在污水处理中的研究进展. 资源节约与环保. 2022(10): 93-96 .
    9. 楚金喜,付根深,王小玲,高静,赵晓娟. 基于改良UCT工艺的精确曝气技术的应用. 净水技术. 2022(11): 70-75 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.9 %FULLTEXT: 10.9 %META: 83.3 %META: 83.3 %PDF: 5.8 %PDF: 5.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %其他: 0.1 %其他: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.3 %China: 0.3 %[]: 0.1 %[]: 0.1 %上海: 3.5 %上海: 3.5 %东莞: 1.3 %东莞: 1.3 %临汾: 0.1 %临汾: 0.1 %丽水: 0.4 %丽水: 0.4 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 5.9 %北京: 5.9 %十堰: 1.0 %十堰: 1.0 %南京: 2.9 %南京: 2.9 %南宁: 1.5 %南宁: 1.5 %南通: 0.4 %南通: 0.4 %厦门: 0.4 %厦门: 0.4 %台州: 0.1 %台州: 0.1 %合肥: 1.4 %合肥: 1.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %天津: 2.8 %天津: 2.8 %安庆: 0.1 %安庆: 0.1 %宜宾: 0.1 %宜宾: 0.1 %宣城: 1.3 %宣城: 1.3 %崇左: 0.1 %崇左: 0.1 %常州: 0.9 %常州: 0.9 %常德: 0.1 %常德: 0.1 %广州: 1.1 %广州: 1.1 %弗吉: 0.4 %弗吉: 0.4 %张家口: 1.4 %张家口: 1.4 %徐州: 0.1 %徐州: 0.1 %成都: 1.3 %成都: 1.3 %扬州: 1.8 %扬州: 1.8 %无锡: 0.5 %无锡: 0.5 %昆明: 0.4 %昆明: 0.4 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 4.3 %杭州: 4.3 %株洲: 0.5 %株洲: 0.5 %桂林: 0.1 %桂林: 0.1 %武汉: 1.3 %武汉: 1.3 %汕头: 0.1 %汕头: 0.1 %江门: 0.8 %江门: 0.8 %池州: 0.1 %池州: 0.1 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.6 %济南: 0.6 %济宁: 0.4 %济宁: 0.4 %济源: 0.1 %济源: 0.1 %深圳: 1.1 %深圳: 1.1 %温州: 0.8 %温州: 0.8 %湖州: 0.4 %湖州: 0.4 %漯河: 6.6 %漯河: 6.6 %潍坊: 0.4 %潍坊: 0.4 %百色: 0.1 %百色: 0.1 %盐城: 1.1 %盐城: 1.1 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.6 %福州: 0.6 %绍兴: 0.1 %绍兴: 0.1 %肇庆: 0.3 %肇庆: 0.3 %芒廷维尤: 17.7 %芒廷维尤: 17.7 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 1.0 %苏州: 1.0 %莆田: 0.1 %莆田: 0.1 %菏泽: 0.1 %菏泽: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 8.7 %西宁: 8.7 %西安: 0.5 %西安: 0.5 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.9 %运城: 0.9 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.5 %郑州: 1.5 %重庆: 0.3 %重庆: 0.3 %镇江: 2.4 %镇江: 2.4 %长沙: 1.5 %长沙: 1.5 %阜阳: 0.1 %阜阳: 0.1 %青岛: 1.9 %青岛: 1.9 %其他其他Central DistrictChina[]上海东莞临汾丽水佛山保定兰州北京十堰南京南宁南通厦门台州合肥哈尔滨嘉兴天津安庆宜宾宣城崇左常州常德广州弗吉张家口徐州成都扬州无锡昆明晋城朝阳杭州株洲桂林武汉汕头江门池州沈阳济南济宁济源深圳温州湖州漯河潍坊百色盐城眉山石家庄福州绍兴肇庆芒廷维尤芝加哥苏州莆田菏泽蚌埠衡阳西宁西安西雅图贵阳运城遵义邯郸郑州重庆镇江长沙阜阳青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (437) PDF downloads(13) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return