Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YANG Yang, HE Wen-qing. RESEARCH STATUS AND PROGRESS OF MICROPLASTIC POLLUTION IN FARMLAND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 156-164,15. doi: 10.13205/j.hjgc.202105022
Citation: YANG Yang, HE Wen-qing. RESEARCH STATUS AND PROGRESS OF MICROPLASTIC POLLUTION IN FARMLAND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 156-164,15. doi: 10.13205/j.hjgc.202105022

RESEARCH STATUS AND PROGRESS OF MICROPLASTIC POLLUTION IN FARMLAND SOIL

doi: 10.13205/j.hjgc.202105022
  • Received Date: 2020-07-26
    Available Online: 2022-01-17
  • Micro plastic is a new kind of soil pollutant, which has a serious impact on soil environment and health, and has become a hot research topic. In this paper, the pollution status and distribution characteristics of farmland soil microplastics were systematically analyzed, and the effects of different agricultural production modes on the pollution abundance of soil microplastics and their distribution and migration characteristics in soil were summarized. This paper expounds the pollution sources of different micro plastics and their harm to the soil environment, and points out that plastic film mulching will become an important source of farmland soil micro plastics pollution. Different particle size, concentration and type of micro plastics will have different degrees of impact on farmland soil physical and chemical properties and soil biology. At the same time, the detection and analysis methods and means of soil micro plastics are also compared and analyzed. Future scientific problems and research directions of soil microplastics are prospected from four aspects:traceability, migration and transformation, pollution hazards and analysis methods, so as to provide a comprehensive scientific reference for the research of farmland soil microplastics and control of microplastics pollution.
  • [1]
    RILLING M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12):6453-6454.
    [2]
    ZARFL C, MATTHIES M. Are marine plastic particles transport vectors for organic pollutants to the arctic?[J]. Marine Pollution Bulletin, 2010, 60(10):1810-1814.
    [3]
    骆永明,周倩,章海波,等.重视土壤中微塑料污染研究防范生态与食物链风险[J]. 中国科学院院刊, 2018, 33(10):1021-1030.
    [4]
    WANG S M, CHEN H Z,ZHOU X W, et al. Microplastic abundance, distribution and composition in the mid-west Pacific Ocean[J]. Environmental Pollution, 2020, 264:114125.
    [5]
    MAO R F, HU Y Y, ZHANG S Y, et al. Microplastics in the surface water of Wuliangsuhai Lake, northern China[J]. Science of the Total Environment, 2020, 723:137820.
    [6]
    WONG G, LOWEMARK L, KUNZ A. Microplastic pollution of the Tamsui River and its tributaries in northern Taiwan:Spatial heterogeneity and correlation with precipitation[J]. Environmental Pollution, 2020, 260:113935.
    [7]
    任欣伟,唐景春,于宸,等. 土壤微塑料污染及生态效应研究进展[J]. 农业环境科学学报, 2018, 37(6):1045-1058.
    [8]
    NIZZETTO L, FUTTER M, LANGAAS S. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science & Technology, 2016, 50(20):10777-10779.
    [9]
    徐湘博,孙明星,张林秀,等. 土壤微塑料污染研究进展与展望[J/OL]. 农业资源与环境学报:1-12.
    [10]
    田浩琦,李唐慧娴,郭倩倩,等. 汾河上中游沿岸农田土壤微塑料污染现状和分布规律研究[C]//2019年中国土壤学会土壤环境专业委员会、土壤化学专业委员会联合学术研讨会论文摘要集.2019:1.
    [11]
    DING L, ZHANG S Y, WANG X Y, et al. The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China[J]. Science of the Total Environment, 2020, 720:137525.
    [12]
    HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260:114096.
    [13]
    韩丽花,李巧玲,徐笠,等. 大辽河流域土壤中微塑料的丰度与分布研究[J]. 生态毒理学报, 2020, 15(1):174-185.
    [14]
    LV W W, ZHOU W Z, LU S B, et al. Microplastic pollution in rice-fish co-culture system:a report of three farmland stations in Shanghai, China[J]. Science of the Total Environment, 2019, 652:1209-1218.
    [15]
    CORRADINI F, MEZA P, EGUILUZ R, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal[J]. Science of The Total Environmen, 2019, 671:411-420.
    [16]
    LIU M T, LU S B, SONG Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China[J]. Environmental Pollution, 2018, 242(Pt A):855-862.
    [17]
    CHEN Y L, LENG Y F, LIU X N, et al. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China[J]. Environmental Pollution, 2020, 257:113449.
    [18]
    LWANGA E H, VEGA J M, QUEJ V K, et al. Field evidence for transfer of plastic debris along a terrestrial food chain[J]. Scientific Reports, 2017, 7(1):140-145.
    [19]
    刘旭. 典型黑土区耕地土壤微塑料空间分布特征[D]. 哈尔滨:东北农业大学, 2019, 19-20.
    [20]
    刘亚菲. 滇池湖滨农田土壤中微塑料数量及分布研究[D]. 昆明:云南大学, 2018, 13-18.
    [21]
    ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of The Total Environmen, 2018, 642:12-20.
    [22]
    HUANG B, SUN L, LIU M, et al. Abundance and distribution characteristics of microplastic in plateau cultivated land of Yunnan Province, China[J]. Environmental science and pollution research international, 2020.
    [23]
    HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments:evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586:127-141.
    [24]
    ZHAO S Y, ZHU L X, WANG T, et al. Suspended microplastics in the surface water of the Yangtze estuary system, China:first observations on occurrence, distribution[J]. Marine Pollution Bulletin, 2014, 86(1/2):562-568.
    [25]
    PANNO S V, KELLY W R, SCOTT J, et al. Microplastic contamination in karst groundwater systems[J]. Groundwater, 2019, 57(2):189-196.
    [26]
    GATIDOU G, ARVANITI O S, STASINAKIS A S. Review on the occurrence and fate of microplastics in Sewage Treatment Plants[J]. Journal of Hazardous Materials, 2019, 367:504-512.
    [27]
    JIANG C B, YIN L S, LI Z W, et al. Microplastic pollution in the rivers of the Tibet Plateau[J]. Environmental Pollution, 2019, 249:91-98.
    [28]
    ZHAO S Y, ZHU L X, LI D J. Microplastic in three urban estuaries, China[J]. Environmental Pollution, 2015, 206:597-604.
    [29]
    吴迪. 我国典型潮间带和海湾表层沉积物微塑料污染现状研究[D]. 成都:西华大学, 2019.
    [30]
    BAYO J, OLMOS S, LOPEZ-CASTELLANOS J, et al. Microplastics and microfibers in the sludge of a municipal wastewater treatment plant[J]. International Journal of Sustainable Development And Planning, 2016, 11(5):812-821.
    [31]
    LI X W, CHEN L B, MEI Q Q, et al. Microplastics in sewage sludge from the wastewater treatment plants in China[J]. Water Research, 2018, 142:75-85.
    [32]
    NICOLAS W, JULIA N M, MARTIN G J L, et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment[J]. Science Advances, 2018, 4(4):eaap8060.
    [33]
    CARR S A, LIU J, TESORO A G. Transport and fate of microplastic particles in wastewater treatment plants[J]. Water Research, 2016, 91:174-182.
    [34]
    MAGNUSSON K, NOREN F, Screening of Microplastic Particles in and Down-Stream a Wastewater Treatment Plant[R]. IVL Swedish Environmental Research Institute, 2014, Report C55.
    [35]
    MINTENING S M, INT-VEEN I, LODER M G J, et al. Identification of microplastic in effluents of waste water treatment plants using focal plane arraybased micro-Fourier-transform infrared imaging[J]. Water Research, 2017, 108:365-372.
    [36]
    周倩, 田崇国, 骆永明. 滨海城市大气环境中发现多种微塑料及其沉降通量差异[J]. 科学通报, 2017, 62(33):3902-3909.
    [37]
    DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout:a source of microplastics in the environment?[J]. Marine Pollution Bulletin, 2016, 104(1/2):290-293.
    [38]
    胡灿,王旭峰,陈学庚,等. 新疆农田残膜污染现状及防控策略[J]. 农业工程学报, 2019, 35(24):223-234.
    [39]
    赵岩,陈学庚,温浩军,等. 农田残膜污染治理技术研究现状与展望[J]. 农业机械学报, 2017, 48(6):1-14.
    [40]
    ERIKSEN M, LEBRETON L C M, CARSON H S, et al. Plastic pollution in the world's oceans:more than 5 trillion plastic pieces weighing over 250000 tons afloat at sea[J]. PLoS One, 2014, 9(12):e111913.
    [41]
    ZHOU B Y, WANG J Q, ZHANG H B, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China:multiple sources other than plastic mulching film[J]. Journal of Hazardous Materials, 2020, 388:121814.
    [42]
    王志超,孟青, 于玲红,等. 内蒙古河套灌区农田土壤中微塑料的赋存特征[J]. 农业工程学报, 2020, 36(3):204-209.
    [43]
    LESLIE H A, BRANDSMA S H, VAN VELZEN M J M, et al. Microplastics en route:Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota[J]. Environment International, 2017, 101:133-142.
    [44]
    WANG J, LUO Y M, TENG Y, et al. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film[J]. Environmental Pollution, 2013,180:265-273.
    [45]
    RILLING M C, ZIERSCH L, HEMPEL S. Microplastic transport in soil by earthworms[J]. Nature Publishing Group UK, 2017, 7(1):1362.
    [46]
    MCGECHAN M B. SW-soil and water:transport of particulate and colloid-sorbed contaminants through soil, part 2:trapping processes and soil pore geometry[J]. Biosystems Engineering, 2002, 83(4):387-395.
    [47]
    MAAß S, DAPHI D, LEHMANN A, et al. Transport of microplastics by two collembolan species[J]. Environmental Pollution, 2017,225:456-459.
    [48]
    刘治君,杨凌肖,王琼,等. 微塑料在陆地水环境中的迁移转化与环境效应[J]. 环境科学与技术, 2018, 41(4):59-65.
    [49]
    李真,何文清,刘恩科,等. 聚乙烯地膜降解过程与机理研究进展[J]. 农业环境科学学报, 2019, 38(2):268-275.
    [50]
    AAMER A S, FARIHA H, ABDUL H, et al. Biological degradation of plastics:a comprehensive review[J]. Biotechnology Advances, 2008, 26(3):246-265.
    [51]
    ANDRADY A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8):1596-1605.
    [52]
    GU J D, FORD T, MItchell R. Microbial corrosion of metals[M]. 2nd Ed. New York:Wiley, 2000:915-927.
    [53]
    LUISA C, FREDERIC C, STUART T. Wagland. Degradation of excavated polyethylene and polypropylene waste from landfill[J]. Science of the Total Environment, 2020, 698:134125.
    [54]
    WAN Y, WU C X, XUE Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil[J]. Science of the Total Environment, 2019, 654:576-582.
    [55]
    REN X W, TANG J C, LIU X M, et al. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil[J]. Environmental Pollution, 2020, 256:113347.
    [56]
    LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185:907-917.
    [57]
    WANG J, HUANG M K, WANG Q, et al. LDPE microplastics significantly alter the temporal turnover of soil microbial communities[J]. Science of the Total Environment, 2020, 726:138682.
    [58]
    TEUTEN E L, SAQUING J M, KNAPPE D R, et al Transport and release of chemicals from plastics to the environment and to wildlife[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1526):2027-2045.
    [59]
    HAEMER J, GUTOW L, KOEHLER A, et al. Fate of microplastics in the marine isopod Idotea emarginata[J]. Environmental Science & Technology, 2014, 48(22):13451-13458.
    [60]
    李晓彤. 聚酯纤维微塑料对蚯蚓(Eisenia foetida)生长的影响[D]. 昆明:云南大学, 2019.
    [61]
    WANG J, COFFIN S, SUN C L, et al. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil[J]. Environmental Pollution, 2019, 249:776-784.
    [62]
    RODRIGUEZ-S A, LOURENCO J, ROCHA-S T, et al. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché[J]. Environmental Pollution, 2017, 220(Pt A):495-503.
    [63]
    CAO D D, WANG X, LUO X X, et al. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil[J]. IOP Conference Series:Earth and Environmental Science, 2017, 61(1):012148.
    [64]
    SHIN W K, YOUN-JOO A. Soil microplastics inhibit the movement of springtail species[J]. Environment International, 2019, 126:699-706.
    [65]
    ZHU B K, FANG Y M, ZHU D, et al. Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus[J]. Environmental Pollution, 2018, 239:408-415.
    [66]
    HODSON M E, DUFFUS-HODSON C A, CLARK A, et al. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J]. Environmental Science & Technology, 2017, 51(8):4714-4721.
    [67]
    BESSELING E, WEGNER A, FOEKEMA E M, et al. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.)[J]. Environmental Science & Technology, 2013, 47(1):593-600.
    [68]
    DE SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10):6044-6052.
    [69]
    刘蓥蓥,张旗,崔文智,等. 聚乙烯微塑料对绿豆发芽的毒性研究[J]. 环境与发展, 2019, 31(5):123-125.
    [70]
    BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226:774-781.
    [71]
    李连祯,周倩,尹娜,等. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 2019, 64(9):928-934.
    [72]
    BANDMANN V, MULLER J D, KOHLER T, et al. Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis[J]. FEBS Letters, 2012, 586(20):3626-3632.
    [73]
    DONG Y M, GAO M L, SONG Z G, et al. Microplastic particles increase arsenic toxicity to rice seedlings[J]. Environmental Pollution, 2020, 259:113892.
    [74]
    BROWNE M A, NIVEN S J, GALLOWAY T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity[J]. Current Biology, 2013, 23(23):2388-2392.
    [75]
    ANDRES R S, BRUNA S, EDUARDO F D S, et al. Low-density polyethylene microplastics as a source and carriers of agrochemicals to soil and earthworms[J]. Environmental Chemistry, 2018, 16(1):8-17.
    [76]
    ZHU D, BI Q F, XIANG Q, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida[J]. Environmental Pollution,2018, 235:150-154.
    [77]
    LAHIVE E, WALTON A, HORTON A A, et al. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure[J]. Environmental Pollution, 2019, 255(Pt 2):113174.
    [78]
    LWANGA E H, GERTSEN H, GOOREN H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J]. Environmental Pollution, 2017, 220(Pt A):523-531.
    [79]
    LEI L L, LIU M T, SONG Y, et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans[J]. Environmental Science:Nano, 2018, 5(8):2009-2020.
    [80]
    ZHAO L, QU M, WONG G, et al. Transgenerational toxicity of nanopolystyrene particles in the range of μg L-1 in the nematode Caenorhabditis elegans[J]. Environmental Science:Nano, 2017, 4(12):2356-2366.
    [81]
    MANI T, FREHLAND S, KALBERER A, et al. Using castor oil to separate microplastics from four different environmental matrices[J]. Analytical Methods, 2019, 11:1788-1794.
    [82]
    YU J P, WANG P Y, NI F L, et al. Characterization of microplastics in environment by thermal gravimetric analysis coupled with Fourier transform infrared spectroscopy[J]. Marine Pollution Bulletin, 2019, 145:153-160.
    [83]
    DIERKES G, LAUSCHKE T, BECHER S, et al. Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography[J]. Analytical and Bioanalytical Chemistry, 2019, 411(26):6959-6968.
    [84]
    DÜMICHEN E, EISENTRAUT P, BANNICK C G, et al. Fast identification of microplastics in complex environmental samples by a thermal degradation method[J]. Chemosphere, 2017, 174:572-584.
    [85]
    DAVID J, WEISSMANNOVA H D, STEINMETZ Z, KABELIKOVA L, et al. Introducing a soil universal model method (SUMM) and its application for qualitative and quantitative determination of poly(ethylene), poly(styrene), poly(vinyl chloride) and poly(ethylene terephthalate) microplastics in a model soil[J]. Chemoshere, 2019, 225:810-819.
    [86]
    NG W, MINASNY B, MCBRATNEY A, Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy[J]. Science of the Total Environment, 2019, 702:134723.
    [87]
    SHAN J J, ZHAO J B, LIU L F, et al. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics[J]. Environmental Pollution, 2018, 238:121-129.
    [88]
    赵军波. 基于高光谱成像技术的环境微塑料检测的研究[D]. 大连:大连理工大学, 2019.
  • Relative Articles

    [1]SONG Lusheng, SUN Zhenzhou, HU Jing, DENG Qinghai. POLLUTION CHARACTERISTICS AND SOURCE APPORTIONMENT OF HEAVY METALS IN AN ABANDONED IRON ORE AND DOWNSTREAM FARMLAND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 155-164. doi: 10.13205/j.hjgc.202410019
    [2]BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
    [3]PU Yitao, YANG Ruyue, XU Yirong, KE Shuizhou, WANG Xiaodong, GAO Jingsi, XIAO Kang. RESEARCH PROGRESS ON EFFECTS OF MICROPLASTICS ON EXCESS SLUDGE AND THEIR DEGRADATION PATHWAYS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 48-56. doi: 10.13205/j.hjgc.202402006
    [4]QIU Fuguo, LIANG Anqi, TONG Shiyu, WANG Chun. INVESTIGATION OF OCCURRENCE REGULARITY OF MICROPLASTICS IN RAINWATER RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 106-112. doi: 10.13205/j.hjgc.202407011
    [5]YU Hong, SHI Lingling. EFFECTS OF MICROPLASTICS ON MICROBIAL COMMUNITIES AND FUNCTIONAL GENES IN SOIL WITH DIFFERENT AGGREGATE-FRACTION LEVELS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 167-174. doi: 10.13205/j.hjgc.202402020
    [6]LIU Jinhe, ZHENG Yuna, LIU Peng, LIN Kuangfei, HUANG Kai, ZHOU Changrui. SIMULATION OF POLLUTION CHARACTERISTICS AND MIGRATION LAW OF CADMIUM IN SOIL OF A TYPICAL ELECTRONIC WASTE DISMANTLING AREA IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 150-158. doi: 10.13205/j.hjgc.202408018
    [7]HUANG Xi, ZHANG Qiaoqiao, YAN Jin, MA Jingjing, LUO Zejiao. POLLUTION SITUATION AND RISK ASSESSMENT OF MICROPLASTICS IN AGRICULTURAL SOIL IN WUHAN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 136-145. doi: 10.13205/j.hjgc.202406016
    [8]LIU Haizhu, BAI Junhong, WANG Yaqi, ZHANG Ling, LIU Zhe. RESEARCH PROGRESS AND HOTSPOT ANALYSIS OF SEDIMENT MICROPLASTICS BASED ON CITESPACE LITERATURE METROLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 42-50. doi: 10.13205/j.hjgc.202301006
    [9]ZHEN Zhaogan, SU Yang, LUO Junxiao, AN Tong, CHEN Yao, GOU Min. EFFECTS OF POLYETHYLENE MICROPLASTICS ON MESOPHILIC AND THERMOPHILIC ANAEROBIC DIGESTION OF SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 86-91,130. doi: 10.13205/j.hjgc.202304012
    [10]LI Yan-xue, ZHANG Meng-zhu, SHU Sha-sha, ZOU Jun-han, JIAO Wei, ZHOU Jun-yu. QUANTITATIVE IDENTIFICATION OF ANTHROPOGENIC HEAVY METAL SOURCES IN FARMLAND SOIL BASED ON ENRICHMENT FACTOR AND MLR-APCS MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 173-177,232. doi: 10.13205/j.hjgc.202209023
    [11]LIU Chao, ZHANG Xiao-ran, LIU Jun-feng, ZHANG Zi-yang, GONG Yong-wei, LI Hai-yan. RELEASE OF MICROPLASTICS FROM PLASTIC PRODUCTS AND THEIR ENVIRONMENTAL TRANSPORT BEHAVIORS: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 205-217. doi: 10.13205/j.hjgc.202205030
    [12]QIU Fuguo, TONG Shiyu, WANG Xiaoqian. RESEARCH PROGRESS ON OCCURRENCE STATUS AND ECOLOGICAL HAZARDS OF MICROPLASTICS IN WATER ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 221-228. doi: 10.13205/j.hjgc.202203032
    [13]LUO Xiao-feng, ZHU Ling-long, XU Guo-liang, YU Shi-qin, OU Shi-ting, CHEN Xiao-hua. TOXICITY OF SUBMICROPLASTIC ON SOIL COLLEMBOLANS FOLSOMIA CANDIDA BY FOOD EXPOSURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 187-193. doi: 10.13205/j.hjgc.202101029
    [14]DOU Wei-qiang, AN Yi, QIN Li, LIN Da-song, DONG Ming-ming. CHARACTERISTICS OF VERTICAL DISTRIBUTION AND MIGRATION OF HEAVY METALS IN FARMLAND SOILS AND ECOLOGICAL RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 166-172. doi: 10.13205/j.hjgc.202102027
    [15]LIANG Shuai, HAN Bing, NIU Ze-pu, ZHAO Ling-dong, GU Jin-yi, WANG Wan-wan, ZHANG Li-feng, ZHANG Yang. SOURCE, MIGRATION AND ECOTOXICOLOGICAL EFFECTS OF MICRO-PLASTICS IN FRESHWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 1-9,70. doi: 10.13205/j.hjgc.202112001
    [16]LIU Peng-xiao, WANG Xu, FENG Ling. OCCURRENCES, RESOURCES AND RISK OF ANTIBIOTICS IN AQUATIC ENVIRONMENT: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 36-42. doi: 10.13205/j.hjgc.202005007
    [17]HOU Jun-hua, TAN Wen-bing, YU Hong, DANG Qiu-ling, LI Ren-fei, XI Bei-dou. MICROPLASTICS IN SOIL ECOSYSTEM: A REVIEW ON SOURCES, FATE, AND ECOLOGICAL IMPACT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 16-27,15. doi: 10.13205/j.hjgc.202002002
  • Cited by

    Periodical cited type(19)

    1. 李巧云,赵航航,杨婵,李鹏飞,齐文博,宋凤敏. 汉江上游农田土壤微塑料与重金属污染特征及生态风险评价. 环境科学. 2025(01): 419-429 .
    2. 游洋洋,张涛,梁增强,霍宁. 我国农田土壤中微塑料污染研究进展与环境管理现状. 环境生态学. 2024(02): 101-106 .
    3. 朱晓艳,王琪琛,姜懿真,武忠,柳钟惠,陈吉孝,王钰琳,袁宇翔. 微塑料对稻田土壤-水界面重金属分布及迁移的影响. 水生态学杂志. 2024(03): 10-20 .
    4. 温浩军,陈学庚,陈浩,缑海啸. 农田地膜回收机械应用现状与发展. 农业环境科学学报. 2024(06): 1271-1277 .
    5. 黄茜,张俏俏,颜瑾,马晶晶,罗泽娇. 武汉农用地土壤中微塑料污染状况和生态风险初探. 环境工程. 2024(06): 136-145 . 本站查看
    6. 熊新港,殷伟庆,常铖炜,王超,林华星,赵文青,李冠霖,解清杰. 农田土壤微塑料的检测及环境行为研究进展. 土壤通报. 2024(03): 886-900 .
    7. 杨文硕,梁鑫,王旭刚,石兆勇,杜鹃. 微塑料对土壤理化性质和生物特性的影响及其降解研究进展. 江苏农业科学. 2024(16): 20-29 .
    8. 路浩东,赵少婷,张俊丽,王蕊,贾汉忠,代允超. 不同类型地膜降解规律及其对土壤理化性质的影响. 农业资源与环境学报. 2024(05): 1171-1181 .
    9. 张茵,侯建平. 试论生态环境保护视域下农业生产用地土壤中塑料微粒污染问题. 中国农业综合开发. 2024(10): 40-45 .
    10. 张蕾,孙东,张建强,朱艳宏,陆一新,李经涵,何杨. 农膜微塑料与酞酸酯在土壤中迁移的研究进展. 土壤. 2024(05): 938-947 .
    11. 姜晓旭,封雪,周笑白,袁广旺,李宗超,郑明辉,李名升. 土壤中微塑料污染现状与检测技术研究进展. 环境化学. 2023(01): 163-175 .
    12. 邓爱琴,赵保卫,朱正钰,段凯祥,张鑫,索进苗,杨茂莺,杨佳妮. 土壤中微塑料的来源与其生态毒理效应研究进展. 环境化学. 2023(02): 345-357 .
    13. 仲子文,李冰,李彦,李德伟,刘延美,颜晓,刘宾绪,刘兆东,王艳芹,孙斌,薄录吉. 我国农田土壤微塑料和重金属污染现状与研究展望. 山东农业科学. 2023(02): 165-172 .
    14. 史增录,张学军,程金鹏,周鑫城,张朝书. 垂直双排链式残膜回收机输膜卸膜装置设计与试验. 干旱地区农业研究. 2023(03): 257-265 .
    15. 陈方涛,刘振鹏,金荣荣,吕军. 浅议潍坊市农村生态环境污染成因及治理经验. 南方农业. 2023(07): 90-92+100 .
    16. 刘明宇,郑旭,强丽媛,李鲁华,张若宇,王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析. 生态环境学报. 2023(11): 2050-2061 .
    17. 臧宇飞,李一凡,吴金柱,徐保建,陈飞勇,王静,邵媛媛,宋扬,王全勇,张瑞娜,刘兵. 城镇有机垃圾热解工艺研究进展. 当代化工. 2022(04): 928-935 .
    18. 张琳,王斯腾,马丽新. 一次性聚丙烯餐盒中汞、砷迁移量分析研究. 环境科技. 2022(03): 69-72 .
    19. 贾涛,薛颖昊,靳拓,鲁天宇. 土壤中微塑料的来源、分布及其对土壤潜在影响的研究进展. 生态毒理学报. 2022(05): 202-216 .

    Other cited types(25)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.8 %FULLTEXT: 14.8 %META: 82.7 %META: 82.7 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.5 %其他: 15.5 %其他: 1.1 %其他: 1.1 %Absecon: 0.1 %Absecon: 0.1 %China: 0.3 %China: 0.3 %[]: 0.1 %[]: 0.1 %上海: 4.7 %上海: 4.7 %东莞: 1.1 %东莞: 1.1 %临汾: 0.3 %临汾: 0.3 %丽水: 0.3 %丽水: 0.3 %乌鲁木齐: 0.4 %乌鲁木齐: 0.4 %伊犁: 0.4 %伊犁: 0.4 %保定: 0.1 %保定: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 6.1 %北京: 6.1 %南京: 2.1 %南京: 2.1 %南宁: 0.3 %南宁: 0.3 %南平: 0.1 %南平: 0.1 %南昌: 0.6 %南昌: 0.6 %台州: 0.6 %台州: 0.6 %合肥: 1.0 %合肥: 1.0 %吉林: 0.3 %吉林: 0.3 %呼和浩特: 0.4 %呼和浩特: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %大连: 0.3 %大连: 0.3 %天津: 0.6 %天津: 0.6 %太原: 0.4 %太原: 0.4 %威海: 0.8 %威海: 0.8 %宁波: 0.4 %宁波: 0.4 %安康: 0.1 %安康: 0.1 %安阳: 0.3 %安阳: 0.3 %宣城: 0.1 %宣城: 0.1 %常州: 0.3 %常州: 0.3 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.6 %广州: 0.6 %开封: 0.4 %开封: 0.4 %张家口: 1.0 %张家口: 1.0 %德州: 0.6 %德州: 0.6 %德阳: 0.8 %德阳: 0.8 %成都: 1.4 %成都: 1.4 %扬州: 1.0 %扬州: 1.0 %无锡: 0.4 %无锡: 0.4 %昆明: 0.6 %昆明: 0.6 %晋中: 0.4 %晋中: 0.4 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.4 %杭州: 1.4 %武汉: 0.6 %武汉: 0.6 %汕头: 0.3 %汕头: 0.3 %江门: 0.1 %江门: 0.1 %沈阳: 0.3 %沈阳: 0.3 %沧州: 0.3 %沧州: 0.3 %泰勒: 0.4 %泰勒: 0.4 %泰安: 0.7 %泰安: 0.7 %泰州: 0.8 %泰州: 0.8 %洛阳: 0.1 %洛阳: 0.1 %济源: 0.3 %济源: 0.3 %深圳: 0.1 %深圳: 0.1 %湖州: 0.6 %湖州: 0.6 %湛江: 0.8 %湛江: 0.8 %滁州: 0.1 %滁州: 0.1 %漯河: 1.0 %漯河: 1.0 %焦作: 0.3 %焦作: 0.3 %瓦赫宁恩: 0.4 %瓦赫宁恩: 0.4 %白城: 0.1 %白城: 0.1 %石家庄: 0.6 %石家庄: 0.6 %石河子: 0.1 %石河子: 0.1 %福州: 0.3 %福州: 0.3 %秦皇岛: 1.4 %秦皇岛: 1.4 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 20.8 %芒廷维尤: 20.8 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.3 %苏州: 0.3 %莫斯科: 0.8 %莫斯科: 0.8 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.1 %衡阳: 0.1 %西宁: 6.0 %西宁: 6.0 %西安: 1.8 %西安: 1.8 %贵阳: 0.1 %贵阳: 0.1 %运城: 1.5 %运城: 1.5 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.9 %郑州: 1.9 %鄂州: 0.3 %鄂州: 0.3 %重庆: 0.4 %重庆: 0.4 %镇江: 0.4 %镇江: 0.4 %长沙: 1.7 %长沙: 1.7 %长治: 0.1 %长治: 0.1 %阜阳: 0.1 %阜阳: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.6 %青岛: 0.6 %马德里: 2.1 %马德里: 2.1 %其他其他AbseconChina[]上海东莞临汾丽水乌鲁木齐伊犁保定六安兰州北京南京南宁南平南昌台州合肥吉林呼和浩特哈尔滨大连天津太原威海宁波安康安阳宣城常州常德平顶山广州开封张家口德州德阳成都扬州无锡昆明晋中晋城朝阳杭州武汉汕头江门沈阳沧州泰勒泰安泰州洛阳济源深圳湖州湛江滁州漯河焦作瓦赫宁恩白城石家庄石河子福州秦皇岛绍兴芒廷维尤芝加哥苏州莫斯科衡水衡阳西宁西安贵阳运城遵义邯郸郑州鄂州重庆镇江长沙长治阜阳阳泉青岛马德里

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (595) PDF downloads(21) Cited by(44)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return