Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Ya, CHEN Jin-quan, YANG Zi-yue, JIN Shi-bo, FU Dong-tang, SHEN Shi-li. GROWTH AND PHYSIOLOGICAL INDEXES OF WHEAT SEEDLINGS UNER CADMIUM STRESS ALLEVIATED BY NANO TITANIUM DIOXIDE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 184-189,195. doi: 10.13205/j.hjgc.202105026
Citation: LIU Ya, CHEN Jin-quan, YANG Zi-yue, JIN Shi-bo, FU Dong-tang, SHEN Shi-li. GROWTH AND PHYSIOLOGICAL INDEXES OF WHEAT SEEDLINGS UNER CADMIUM STRESS ALLEVIATED BY NANO TITANIUM DIOXIDE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 184-189,195. doi: 10.13205/j.hjgc.202105026

GROWTH AND PHYSIOLOGICAL INDEXES OF WHEAT SEEDLINGS UNER CADMIUM STRESS ALLEVIATED BY NANO TITANIUM DIOXIDE

doi: 10.13205/j.hjgc.202105026
  • Received Date: 2019-12-04
    Available Online: 2022-01-17
  • The research mainly studied whether the use of different concentrations of nano-titanium dioxide (TiO2-NPs) (0, 25, 50, 100 and 200 mg/L) in hydroponic environment could alleviate the physiological toxicity of Cd to wheat seedlings. The oxidative stress on wheat caused by Cd was alleviated by TiO2-NPs application in the hydroponic environment. The toxicity of Cd to wheat seedlings was alleviated, the biomass, root length and plant height of wheat were significantly increased, and the photosynthesis of wheat was improved. The net photosynthetic rate of wheat seedlings was increased significantly at medium concentrations (50, 100 mg/L) of TiO2-NPs. For all concentrations of TiO2-NPs, the POD enzyme activity was significantly lower than the Cd treatment group; the SOD enzyme activity was significantly lower than Cd treatment group at lower concentrations (<200 mg/L). Results showed that the use of TiO2-NPs effectively alleviated the toxicity of Cd to wheat seedlings and improved the photosynthesis of wheat seedlings by reducing the oxidative stress caused by Cd.
  • [1]
    PICCINNO F, GOTTSCHALK F SEEGER S, et al.Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world[J]. Journal of Nanoparticle Research, 2012, 14(9):1109.
    [2]
    HEILIGTAG F J, NIEDERBERGER M.The fascinating world of nanoparticle research[J]. Materials Today, 2013, 16(7/8):262-271.
    [3]
    BESHA A T, LIU Y, BEKELE D N, et al.Sustainability and environmental ethics for the application of engineered nanoparticles[J]. Environmental Science & Policy, 2020, 103:85-98.
    [4]
    王耀彬,徐德福,廖晨曦.纳米TiO2光催化技术及其在环境污染治理中的应用探讨[J]. 环境与发展, 2019,31(4):111,113.
    [5]
    常红,王京刚.纳米二氧化钛在环保领域中的应用[J].矿冶,2002, 11(4):73-76.
    [6]
    刘珊珊.纳米二氧化钛在重金属废水处理中吸附性能的研究[D].南宁:广西大学,2016.
    [7]
    周雄,张金洋,王定勇,等.纳米TiO2吸附HgCl2水溶液中Hg(Ⅱ)[J]. 环境科学,2016, 37(1):220-227.
    [8]
    SHAHRIAR,MAHDAVI.Nano-TiO2 modified with natural and chemical compounds as efficient adsorbents for the removal of Cd2+, Cu2+, and Ni2+ from water[J]. Clean Technologies and Environmental Policy, 2016, 18(1):81-94.
    [9]
    许文杰,虢清伟,许振成,等.电沉积处理含镉废水的性能研究[J].环境工程, 2015, 33(1):23-26.
    [10]
    ISMAIL A A, EL-MIDANY A A, IBRAHIM I A, et al.Heavy metal removal using SiO2-TiO2 binary oxide:experimental design approach[J]. Adsorption, 2007, 14:21-29.
    [11]
    陈建勋,王晓峰.植物生理学实验指导[M]. 广州:华南理工大学出版社,2006.
    [12]
    FRAZIER T P, BURKLEW C E,ZHANG B H. Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum)[J]. Functional & Integrative Genomics, 2014, 14(1):75-83.
    [13]
    彭玲,贾芬,田小平,等.硒对油菜根尖镉胁迫的缓解作用[J].环境科学学报,2015,35(8):304-311.
    [14]
    李冬琴,陈桂葵,郑海,等.镉对两品种玉豆生长和抗氧化酶的影响[J].农业环境科学学报,2015, 34(2):221-226.
    [15]
    芦晓磊,宁伟,汤贺,等.光照强度对马齿苋生长及光合特性的影响[J].华北农学报,2008, 23(2):41-44.
    [16]
    郝梦洋.重金属污染土壤的纳米修复技术[J].化工设计通讯, 2017,43(7):82.
    [17]
    KELLER A A, MCFERRAN S, LAZAREVA A, et al.Global life cycle releases of engineered nanomaterials[J]. Journal of Nanoparticle Research, 2013, 15:1692.
    [18]
    GARDEA-TORRESDEY J L, RICO C M, WHITE J C.Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments[J]. Environmental Science & Technology, 2014, 48(5):2526-2540.
    [19]
    白伟, 张程程, 姜文君,等. 纳米材料的环境行为及其毒理学研究进展[J]. 生态毒理学报, 2009,4(2):24-32.
    [20]
    文双喜,王毅力.水培实验中不同粒径纳米TiO2对金鱼藻种子发芽和植株生长和生理的影响[J]. 生态毒理学报, 2018, 13(6):268-277.
    [21]
    兰丽贞,赵群芬,金凯星.环境中纳米TiO2对拟南芥生长及相关基因表达的影响[J].核农学报,2018, 32(2):0389-0398.
    [22]
    REJEBA K B, GHNAYAA T, ZAIERA H, et al.Evaluation of the Cd2+ phytoextraction potential in the xerohalophyte Salsola kali L. and the impact of EDTA on this process[J]. Ecological Engineering, 2013, 60:309-315.
    [23]
    游少鸿,滕云,马丽丽,等.香蒲吸收镉的途径及体内镉化学形态研究[J].环境工程,2016,34(8):58-61.
    [24]
    于珊珊,高正捷,杨月红,等.水体底泥对重金属的吸附机理研究进展[J]. 环境工程,2015,35(增刊1):1018-1020.
    [25]
    张金彪,黄维南.镉对植物的生理生态效应的研究进展[J]. 生态学报, 2000, 20(3):514-523.
    [26]
    孟自力,贾斌,尹海燕,等.镉胁迫对小麦生长发育的影响[J].中国农学通报, 2018, 34(23):26-32.
    [27]
    洪仁远,蒲长光.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报,1991,6(3):70-75.
    [28]
    王宏镔,王焕校,文传浩,等.镉处理下不同小麦品种几种解毒机制探讨[J].环境科学学报,2002, 22(4):523-528.
    [29]
    涂庆华,李娘辉,李玲,等,纳米化的二氧化钛促进绿豆下胚轴不定根形成[J].植物生理学报,2005, 41(3):313-315.
    [30]
    侯东颖.纳米二氧化钛胁迫对普生轮藻的毒性效应[D]. 太原:山西大学,2012.
    [31]
    HONG F S,YANG F,LIU C,et al.Influences of nano-TiO2 on the chloroplast aging of spinach under light[J]. Biological Trace Element Research, 2005, 104(3):249-260.
    [32]
    薛永来,孙先超,张欣,等.纳米二氧化钛通过ROS诱导的氧化损伤途径抑制水稻生长[C]//中国化学会第28届学术年会第2分会场摘要集. 2012.
    [33]
    邓杰,戴林建,苏招红,等.二氧化钛喷施剂对烤烟上部烟叶光合作用和叶绿素荧光参数的影响[J].华南农业大学学报,2018, 39(4):33-38.
    [34]
    张萍,崔海信,张志娟,等.纳米TiO2光半导体溶胶对植物光合机能的影响[J].中国农学通报, 2008, 24(8):230-233.
    [35]
    李博,陶功胜,谢寅峰,等.纳米TiO2对髯毛箬竹光合作用日变化的影响[J].西北林学院学报, 2012,27(1):35-39.
    [36]
    满向甜,林华,林志毅,等.李氏禾耐铜胁迫的积累特征及生理响应[J].环境工程, 2019, 37(9):97-102.
  • Relative Articles

    [1]LIU Jinhe, ZHENG Yuna, LIU Peng, LIN Kuangfei, HUANG Kai, ZHOU Changrui. SIMULATION OF POLLUTION CHARACTERISTICS AND MIGRATION LAW OF CADMIUM IN SOIL OF A TYPICAL ELECTRONIC WASTE DISMANTLING AREA IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 150-158. doi: 10.13205/j.hjgc.202408018
    [2]WANG Tianqi, LI Yanling, YANG Yang, NIU Shuo, WANG Meie, CHEN Weiping. EFFECT AND APPLICATION RISK OF PLOUGH-LAYER RECONSTRUCTION ON ACCUMULATION OF CADMIUM BY WHEAT GRAIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 116-122,169. doi: 10.13205/j.hjgc.202304016
    [3]MAO Xinyu, ZHAI Senmao, JIANG Xiaosan, SUN Jingjing, YU Huaizhi. EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016
    [4]ZHANG Kaijie, FENG Qian, SHANG Weichun, OU Zixuan, CAO Jiashun. SYNTHESIS OF CORE-SHELL CHITOSAN-Ag/TiO2 COMPOSITE BEADS FOR DEGRADATION OF IBUPROFEN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 9-17. doi: DOI:10.13205/j.hjgc.202207002
    [5]MAO Xinyu, YU Huaizhi, ZHAI Senmao, JIANG Xiaosan, XU Zhou, WANG Qilin. LONG-TERM STABILIZATION EFFECT AND ECOLOGICAL RISK ASSESSMENT OF SOIL CADMIUM AND LEAD BY USING MODIFIED COCONUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 140-146. doi: 10.13205/j.hjgc.202204020
    [6]LI Xiang, YANG Chi-hao, LIU Ye, ZHANG Min, SUN Xiao-feng, ZHOU Yu-cheng, YIN Wei-qin, WANG Sheng-sen, WANG Xiao-zhi. EFFECT OF PASSIVATORS ON Cd AVAILABILITY IN FARMLAND SOIL AND Cd UPTAKE BY DIFFERENT RICE VARIETIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 211-216. doi: 10.13205/j.hjgc.202109030
    [7]FU Rao, ZHANG Wen-long, FENG Jiang-tao, YAN Wei. SYNTHESIZATION OF ANATASE TiO2 SYNTHESIZED AT LOW TEMPERATURE, AND ITS ADSORPTION PERFORMANCE ON FLUORIDE ION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 70-76. doi: 10.13205/j.hjgc.202002009
    [8]LU Xiu-guo, WU Jin-jin, ZHENG Yu-jia. PASSIVATION OF CADMIUM IN SOIL BY WALNUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 196-202. doi: 10.13205/j.hjgc.202011032
    [9]SU Chang, LI Ying-fen, YAN Xing, CHONG Yun-xiao. DIVERSITY OF IRON MINERALS AND THEIR ADSORPTION TO Cd IN FERROUS OXIDATION AND DENITRIFICATION BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 76-83. doi: 10.13205/j.hjgc.202005014
    [10]CAO Xin, WEI Qun, SU Yuan, LIAO Yun-sheng, JIN Li. PHYSIOLOGICAL RESPONSE OF CHLORELLA PYRENOIDOSA BIOFILM TO CADMIUM STRESS AND ITS REMOVAL EFFECT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 77-80,127. doi: 10.13205/j.hjgc.202002010
    [15]Wang Xiquan Zhao Dandan Yu Lihong, . STUDY ON DEGRADATION OF METHYLENE BLUE BY GRAPHENE/TiO2[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 38-42. doi: 10.13205/j.hjgc.201502008
    [16]Cong Jing Yan Dahai Li Li Jiang Xuguang Zhou Yingnan He Jie Wang Qi, . CONDENSATION AND ABSORPTION KINETICS OF THE CEMENT RAW MEAL ON LEAD AND CADMIUM AT LOW-TEMPERATURES DURING CO-PROCESSING IN CEMENT KILNS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 103-107. doi: 10.13205/j.hjgc.201504022
    [17]Jia Dongjing, Guo Xinchao, Sun Changshun, . STUDY ON DIALYSIS OF YAM DIOSGENIN HYDROLYTIC WASTEWATER IN HOMOGENEOUS ION EXCHANGE MEMBRANE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 23-26. doi: 10.13205/j.hjgc.201501006
  • Cited by

    Periodical cited type(5)

    1. 王玥睿,王思源,朱珺,张炫宇,陈春源,王若曦,宋佳怡,邹金华. 旱柳对土壤纳米二氧化钛与镉单一及共存体系的响应特征. 生态学杂志. 2024(11): 3365-3375 .
    2. 邹宇,沙海超,向茹滢,袁恺成,杨金辉,曾涛涛. 生物炭负载微生物处理含镉废水的效能与机理. 工业水处理. 2023(07): 135-143 .
    3. 张悦,牛洁,王诗琦,刘兴萍,王延秀. 纳米TiO_2处理对山定子响应重茬土壤胁迫的生理效应研究. 寒旱农业科学. 2023(07): 654-661 .
    4. 刘晓宇,张雪薇,戴昊鸣,陈斯琳,王梦华,张凯悦,王纪元,成喜雨,晏琼. 纳米二氧化钛对生菜的生长效应分析. 热带亚热带植物学报. 2023(05): 679-685 .
    5. 朱梅,张天彤,栗昕羽,姚刚,陈雷. 远红光对小麦种子萌发与幼苗生长的影响. 麦类作物学报. 2021(08): 977-983 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.6 %FULLTEXT: 8.6 %META: 89.1 %META: 89.1 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.6 %其他: 13.6 %[]: 0.6 %[]: 0.6 %上海: 3.4 %上海: 3.4 %东莞: 2.3 %东莞: 2.3 %临汾: 0.6 %临汾: 0.6 %保定: 2.3 %保定: 2.3 %北京: 2.8 %北京: 2.8 %南宁: 0.6 %南宁: 0.6 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 1.7 %呼和浩特: 1.7 %哈尔滨: 1.1 %哈尔滨: 1.1 %天津: 0.6 %天津: 0.6 %太原: 0.6 %太原: 0.6 %常德: 0.6 %常德: 0.6 %张家口: 0.6 %张家口: 0.6 %徐州: 0.6 %徐州: 0.6 %成都: 3.4 %成都: 3.4 %扬州: 1.1 %扬州: 1.1 %无锡: 0.6 %无锡: 0.6 %昆明: 1.1 %昆明: 1.1 %晋城: 1.1 %晋城: 1.1 %朝阳: 0.6 %朝阳: 0.6 %杭州: 1.1 %杭州: 1.1 %武汉: 2.3 %武汉: 2.3 %洛阳: 0.6 %洛阳: 0.6 %济源: 0.6 %济源: 0.6 %淮北: 0.6 %淮北: 0.6 %湖州: 2.3 %湖州: 2.3 %漯河: 1.1 %漯河: 1.1 %福州: 0.6 %福州: 0.6 %绍兴: 1.1 %绍兴: 1.1 %芒廷维尤: 18.2 %芒廷维尤: 18.2 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 2.3 %苏州: 2.3 %衢州: 2.3 %衢州: 2.3 %西宁: 11.9 %西宁: 11.9 %贵阳: 1.1 %贵阳: 1.1 %运城: 6.3 %运城: 6.3 %遵义: 0.6 %遵义: 0.6 %邯郸: 1.1 %邯郸: 1.1 %郑州: 2.3 %郑州: 2.3 %重庆: 1.1 %重庆: 1.1 %长沙: 1.1 %长沙: 1.1 %长治: 0.6 %长治: 0.6 %其他[]上海东莞临汾保定北京南宁合肥呼和浩特哈尔滨天津太原常德张家口徐州成都扬州无锡昆明晋城朝阳杭州武汉洛阳济源淮北湖州漯河福州绍兴芒廷维尤芝加哥苏州衢州西宁贵阳运城遵义邯郸郑州重庆长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (156) PDF downloads(5) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return