Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Song-hua, ZHOU Jing, JIN Wen-long, TANG Ming, WU Jin. HEALTH RISK ASSESSMENT OF CENTRALIZED DRINKING WATER SOURCES IN SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 217-224. doi: 10.13205/j.hjgc.202105030
Citation: LIU Song-hua, ZHOU Jing, JIN Wen-long, TANG Ming, WU Jin. HEALTH RISK ASSESSMENT OF CENTRALIZED DRINKING WATER SOURCES IN SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 217-224. doi: 10.13205/j.hjgc.202105030

HEALTH RISK ASSESSMENT OF CENTRALIZED DRINKING WATER SOURCES IN SUZHOU

doi: 10.13205/j.hjgc.202105030
  • Received Date: 2020-07-02
    Available Online: 2022-01-17
  • By collecting the routine monitoring data of the centralized drinking water sources in Suzhou from 2015 to 2019 and adopting the health risk assessment model recommended by the US EPA, a comprehensive health risk assessment was carried out on 12 water sources in use. The results showed that the average risk of carcinogens, non-carcinogens were 4.07×10-5/a, 3.61×10-9/a and 4.07×10-5/a for total health risk respectively. The rank of total health risk by water sources was Changjiang Xinhaiba water source (5.33×10-5)>Changshu Changjiang Rive water source (4.68×10-5)>Yangcheng Lake water source (4.49×10-5)>Zhenhu Tai Lake water source (4.30×10-5)>Gonghu jinshuwan Tai Lake water source (4.14×10-5)>Liuhekou Changjiang Rive water source (3.96×10-5)>Siqian Tai Lake water source (3.95×10-5)>Puppet Lake water source (3.79×10-5)>ShangLake water source (3.77×10-5)>Yuyangshan Taihu Lake water source (3.69×10-5)>Miaogang Taihu Lake water source (3.46×10-5)>North tingzi Taihu Lake water source (3.39×10-5); by region, they were in the sequence of Zhangjiagang City>Industrial Park>Changshu City>Xiangcheng District>High tech Zone>Taicang City>Wuzhong District>Gusu District>Kunshan City>Wujiang District; the carcinogenic risk was higher than that of non-carcinogenic. More attention should be paid to Cr(Ⅵ) and Cd for carcinogens and fluoride for non-carcinogens. In general, water sources in Suzhou were relatively safe and their risk rank were within the maximum acceptable risk threshold recommended by USEPA.
  • [1]
    胡二邦.环境风险评价实用技术和方法[M].北京:中国环境科学出版社,2000:158-200.
    [2]
    范清华,黎刚.太湖饮用水源地水环境健康风险评价[J].中国环境监测, 2012, 28(1):6-9.
    [3]
    李文攀,朱擎.集中式饮用水水源地水质评价方法研究[J].中国环境监测, 2015,31(1):24-27.
    [4]
    周国宏,彭朝,余淑苑,等.深圳市饮用水源水中重金属污染物健康风险评价[J].环境与健康杂志, 2011, 28(1):54-55.
    [5]
    曾光明,卓利,钟政林,等.水环境健康风险评价模型及其应用[J].水电能源科学, 1997, 15(4):28.
    [6]
    侯伟,孙韶华,李桂芳,等.黄河下游浅型山区和引黄水库水环境健康风险评价[J].水资源与水工程学报, 2016, 27(4):34-40.
    [7]
    US Environment Protection Ageney. Superfund public health evaluation manual[M].Washington DC:US EPA.1986:427-427.
    [8]
    刘兵,张凯,唐红军,等.遂宁城乡集中式饮用水水源地钡分布特征及健康风险评价[J].中国环境监测,2016,32(6):13-19.
    [9]
    王若师,张娴,许秋瑾,等.东江流域典型乡镇饮用水源地有机污染物健康风险评价[J].环境科学学报,2012,32(11):2874-2883.
    [10]
    彭珂,张晓范,罗钰.长沙市主要饮用水源地水质健康风险评价[J].环保科技,2013,19(1):10-12.
    [11]
    韩芹芹,王涛,杨永红.乌鲁木齐市主要饮用水源地水质健康风险评价[J].中国环境监测,2015,31(1):57-63.
    [12]
    廖蔚宇,杨绍平,纪丁愈,等.南充市饮用水源地水环境健康与安全风险评价[J].四川环境,2015,34(6):112-116.
    [13]
    黄玉琴,周小宁,朱文君.南宁市河流型水源地重金属污染调查与健康风险评价[J].环境监测管理与技术,2015(1):32-34,70.
    [14]
    封丽,张君,封雷,等.三峡库区主要城镇饮用水源地水质健康风险评价[J].环境污染与防治,2016,38(2):44-49.
    [15]
    程璜鑫,余葱葱,赵委托,等.东莞市某地区地表水中重金属健康风险不确定性评价[J].生态毒理学报,2016,11(2):556-565.
    [16]
    张永江,邓茂,黄晓容,等.生态保护区域饮用水源地水质金属健康风险评价[J].环境监测管理与技术,2017,29(3):32-36.
    [17]
    王旭旭.水库型水源地污染综合治理技术研究[D].大连:大连理工大学,2016.45-63.
    [18]
    李莹莹,张永江,邓茂,等.武陵山区域典型生态保护城市饮用水源地水质人体健康风险评价[J].环境科学研究,2017,30(2):282-290.
    [19]
    陈汉,王振峰,梅琨,等.东南沿海某水源地水质健康风险评价[J].环境化学,2019,38(5):1161-1170.
    [20]
    EPA US. Risk assessment guidance for superfund:volume3-process for conducting probabilistic risk assessment chapter1, part a[R].washington,DC:office of emergency and renedital Response US EPA,2001.
    [21]
    黄奕龙,王仰麟,谭启宇,等.城市饮用水源地水环境健康风险评价及风险管理[J].地学前缘,2006,13(3):162-167.
    [22]
    邹滨,曾永年,ZHAN B,等.城市水环境健康风险评价[J].地理与地理信息科学,2009,25(2):94-98.
    [23]
    王秋莲,张震,刘伟.天津市饮用水源地水环境健康风险评价[J].环境科学与技术,2009,32(5):187-190.
    [24]
    戴明忠.江苏省饮用水源地健康风险研究[D].南京:南京大学,2010:49-80.
    [25]
    US EPA. Exposure factor handbook[S].Washington DC:US EPA,2009.
    [26]
    NAVONI J A,PIETRI D D,OLMOS V,et al. Human health risk assessment with patia 1analysis:study of a population chronically exposed to arsenic through drinking water from Argentina[J].Science of the Total Environment,2014,499(15):166-174.
    [27]
    刘军,候佳男,黄爽.辽宁省地下饮用水源水环境健康风险评价[J].沈阳建筑大学学报(自然科学版),2016,32(1)177-185.
    [28]
    魏金波,郑怀军,刘欣.大连市水环境健康风险评价[J].环境科学导刊,2012(5):71-73.
    [29]
    任晓霞,张鸣之,韩明伟.咸阳市地下水饮用水源地的水环境评价[J].环境工程,2019,37(4):17-21.
    [30]
    李新伟,刘仲,张扬.济南市农村集中式供水水质健康风险评价[J].卫生研究,2014,43(2):309-310.
    [31]
    唐行鹏,李二平,刘宝玲.黑龙江省农村饮用水水质健康风险评价[J].现代生物医学进展,2012,12(11):2182-2185.
    [32]
    符刚,曾强,赵亮,等.基于GIS的天津市饮用水水质健康风险评价[J].2015,36(12):4553-4560.
    [33]
    高继军,张力平,黄圣彪,等.北京市饮用水源水重金属污染物健康风险的初步评价[J].环境科学,2004,25(2):47-50.
    [34]
    盛翼,张虎军.无锡市饮用水源地水环境健康风险评价[J].干旱环境监测,2019, 33(1):1-7.
    [35]
    胡英,祁士华,张俊鹏,等.我国桂林毛村地下河重金属健康风险评价[J].环境化学,2010,29(3):392-396.
    [36]
    李元锋,杜慧兰,陈俊,等.成都市饮用水水质监测状况及健康风险初评[J].现代预防医学,2011,38(15):3091-3094.
    [37]
    王涛.2012-2017年乌鲁木齐市主要饮用水源地水质健康风险评价[J].环境与发展,2018(6):12-13.
    [38]
    邓春拓,何伦发,郭艳.珠三角某市生活饮用水中化学污染物健康风险评价[J]. 医药卫生科技,2017,5(21):523-526.
    [39]
    梁锡念,甘日华.供水卫生安全保障与管理[M].北京:人民卫生出版社,2009:174-188.
  • Relative Articles

    [1]LE Jihang, WANG Wenlong, WU Qianyuan, CHEN Zhuo, WU Yinhu, JIA Haifeng, LIU Fanghua, WANG Fang, HU Hongying. Quality and risk characteristics of effluent from wastewater treatment plants in central area of Luzhou[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 135-143. doi: 10.13205/j.hjgc.202501015
    [2]LIU Yuxin, ZENG Lingwu, FANG Zheng, SUN Dezhi. COMPREHENSIVE PERFORMANCE EVALUATION OF URBAN WASTEWATER TREATMENT PLANTS IN THE UPPER AND MIDDLE REACHES OF THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 34-42. doi: 10.13205/j.hjgc.202412005
    [3]GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
    [4]WU Yi, MAO Xufeng, SONG Xiuhua, YU Hongyan, TANG Wenjia, XIE Shunbang, LIU Zebi, DING Qizhi. COMMUNITY CHARACTERISTICS AND INFLUENCING FACTORS OF METHANOGENS IN CASCADE RESERVOIRS IN THE UPPER YELLOW RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 8-17. doi: 10.13205/j.hjgc.202412002
    [5]LI Yunong, WEN Donghui. IMPACTS OF WASTEWATER TREATMENT PLANTS EFFLUENT ON MICROBIAL COMMUNITY OF RECEIVING WATER BODIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 167-179. doi: 10.13205/j.hjgc.202409016
    [6]LI Feifei, SU Zhiguo, CAO Feng, MU Qinglin, HUANG Bei, CHEN Lüjun, WEN Donghui. CONTRIBUTION OF WASTEWATER DISCHARGE FROM SEWAGE TREATMENT PLANTS TO ANTIBIOTIC POLLUTION IN COASTAL WATER: A CASE STUDY OF HANGZHOU BAY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 1-8. doi: 10.13205/j.hjgc.202404001
    [7]ZHANG Yili, LIU Hui, QIAN Xiaoyong. N2O EMISSION FROM MUNICIPAL WASTEWATER TREATMENT PLANTS: EMISSION CHARACTERISTICS AND CONTROL STRATEGIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 9-21. doi: 10.13205/j.hjgc.202404002
    [8]YU Huaixing, YUAN Ding, HE Zihao. APPLICATION OF SHORT-RANGE PRECISION AERATION AND INTELLIGENT CONTROL SYSTEM IN SEWAGE TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 165-171. doi: 10.13205/j.hjgc.202311026
    [9]WANG Qinyi, SHENG Yangyue, SONG Ningning, ZHANG Junqi, ZENG Songxi, QIAN Xiaoyong, QIU Kaipei, LIU Qizhen. PROGRESS OF CH4 AND N2O MONITORING IN FULL-SCALE WASTEWATER TREATMENT PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 51-60. doi: 10.13205/j.hjgc.202310008
    [10]ZHANG Jie, ZHANG Jian, CAO Xiaoqiang, CHEN Xinhan, LIU Huaqing. ENHANCED NITRIFICATION AND DENITRIFICATION BY COUPLING MICROBIAL ELECTROLYSIS CELL IN A SINGLE BED VERTICAL FLOW CONSTRUCTED WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 32-37,70. doi: 10.13205/j.hjgc.202306005
    [11]XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022
    [12]SHAN Changgong, WANG Wei, XIE Yu, WU Peng, ZENG Xiangyu, ZHU Qianqian, LIANG Bin, ZHA Lingling, LIU Cheng. TOTAL COLUMN CONCENTRATION OBSERVATION OF CO2 AND CH4 BY A PORTABLE GROUND-BASED FTIR SPECTROMETER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 14-19,140. doi: 10.13205/j.hjgc.202310003
    [13]JING Yu-shu, MOU Run-zhi, JIANG Yi-ming, LIU Zhang-qing, YANG Yan-dong. REDUCING ENERGY AND CHEMICALS CONSUMPTION OF WASTEWATER TREATMENT PLANTS BY ACCURATE AERATION CONTROL: A CASE STUDY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 141-145,165. doi: 10.13205/j.hjgc.202205020
    [14]WANG Zhaoyue, ZHAO Xiaying, TANG Linhui, LIU Yu, CHENG Huiyu, PAN Yirong, YAN Xu, WANG Xu. RESEARCH ADVANCES IN CARBON EMISSION MONITORING AND ASSESSMENT OF URBAN DRAINAGE AND WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 77-82,161. doi: 10.13205/j.hjgc.202206010
    [15]ZHAO Gang, TANG Jianguo, XU Jingcheng, LUO Jingyang, JIANG Ming, YUAN Xianchen, ZHOU Chuanting. COMPARATIVE ANALYSIS ON ENERGY AND CARBON EMISSION OF TYPICAL SLUDGE TREATMENT PROJECTS IN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 9-16. doi: 10.13205/j.hjgc.202212002
    [16]LUO Yuli, PAN Yirong, MA Jiaxin, WANG Jiayuan, LI Chunyao, CHEN Zhenpeng, WANG Xu. RESEARCH ADVANCES ON CARBON EMISSION OF WASTEWATER RESOURCE RECOVERY AND VALORIZATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 83-91,187. doi: 10.13205/j.hjgc.202206011
    [17]Chen Shi, PENG Lai, XU Yifeng, LIANG Chuanzhou, NI Bingjie. RECENT ADVANCES IN MATHEMATICAL MODELING OF NITROUS OXIDES EMISSION DURING BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 97-106,122. doi: 10.13205/j.hjgc.202206013
    [18]SHAN Wei, WANG Yan, ZHENG Kai-kai, LI Ji. TECHNOLOGY COMPARISON AND ANALYSIS ON COD REMOVAL UPGRADING OF WASTEWATER TREATMENT PLANTS FOR HIGH PROPORTION OF INDUSTRY WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 32-37,24. doi: 10.13205/j.hjgc.202007005
    [19]SHEN Jie, JIN Wei. REVIEW ON EFFECT OF URBAN WASTEWATER TREATMENT PLANT EFFLUENT ON RECEIVING WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 92-98,115. doi: 10.13205/j.hjgc.202003016
    [20]YU Yong, YU Sheng-hua, CHEN Da-gang. PRACTICE AND REFLECTION ON CLEAN EMISSION TECHNOLOGY TRANSFORMATION OF URBAN SEWAGE TREATMENT PLANTS IN ZHEJIANG PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 19-24. doi: 10.13205/j.hjgc.202007003
  • Cited by

    Periodical cited type(6)

    1. 徐金兰,许开慧,曹泽壮,代佳楠,李峰森,白文广,荣悦彤,薛淑君. 预氧化联合激活剂促进微生物长效降解土壤中烷烃的研究. 环境科学研究. 2024(07): 1561-1572 .
    2. 徐佰青,王雨,张雷,王文祥,李爱民,单广波. 腐殖酸的人工合成及其在环境污染修复中的研究进展. 环境工程学报. 2024(07): 1768-1782 .
    3. 李时琛,周航海,姜丽佳,林晓云,章春芳,李艳红. 沿海滩涂石油污染生物修复技术. 安全与环境工程. 2022(02): 166-173 .
    4. 郑瑾,韩瑞瑞,李丹丹,王馨妤,高春阳,杜显元,张晓飞,邹德勋. 过氧化尿素与微生物联合修复石油污染土壤. 化工进展. 2022(09): 5085-5093 .
    5. 周霞萍,梁圣模,沈天瑞,王玉诺,刘泽. 创新腐植酸产品工艺开展“碳预算”“碳达峰”“碳中和”示例分析. 腐植酸. 2021(03): 61-66 .
    6. 刘维涛,李剑涛,郑泽其,李法云. 微生物固定化技术修复石油烃污染土壤. 应用技术学报. 2021(04): 339-347 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.1 %FULLTEXT: 12.1 %META: 83.5 %META: 83.5 %PDF: 4.4 %PDF: 4.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.6 %其他: 20.6 %其他: 0.4 %其他: 0.4 %Central District: 3.6 %Central District: 3.6 %上海: 1.6 %上海: 1.6 %东莞: 0.8 %东莞: 0.8 %保定: 0.4 %保定: 0.4 %北京: 2.8 %北京: 2.8 %南京: 5.2 %南京: 5.2 %南昌: 0.8 %南昌: 0.8 %台州: 0.8 %台州: 0.8 %合肥: 1.6 %合肥: 1.6 %嘉兴: 0.4 %嘉兴: 0.4 %大同: 0.8 %大同: 0.8 %天津: 2.8 %天津: 2.8 %宣城: 1.6 %宣城: 1.6 %常州: 1.6 %常州: 1.6 %常德: 0.4 %常德: 0.4 %广州: 1.6 %广州: 1.6 %张家口: 0.8 %张家口: 0.8 %扬州: 2.0 %扬州: 2.0 %无锡: 0.4 %无锡: 0.4 %昆明: 0.4 %昆明: 0.4 %晋城: 0.4 %晋城: 0.4 %杭州: 0.8 %杭州: 0.8 %松原: 0.4 %松原: 0.4 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.8 %沈阳: 0.8 %温州: 0.8 %温州: 0.8 %湖州: 1.2 %湖州: 1.2 %漯河: 5.2 %漯河: 5.2 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 20.2 %芒廷维尤: 20.2 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 3.2 %苏州: 3.2 %莆田: 0.4 %莆田: 0.4 %衡阳: 0.8 %衡阳: 0.8 %衢州: 0.8 %衢州: 0.8 %西宁: 1.6 %西宁: 1.6 %西安: 1.6 %西安: 1.6 %贵阳: 1.2 %贵阳: 1.2 %运城: 2.0 %运城: 2.0 %遵义: 0.4 %遵义: 0.4 %郑州: 0.8 %郑州: 0.8 %重庆: 0.8 %重庆: 0.8 %长沙: 2.0 %长沙: 2.0 %青岛: 1.2 %青岛: 1.2 %其他其他Central District上海东莞保定北京南京南昌台州合肥嘉兴大同天津宣城常州常德广州张家口扬州无锡昆明晋城杭州松原武汉沈阳温州湖州漯河石家庄芒廷维尤芝加哥苏州莆田衡阳衢州西宁西安贵阳运城遵义郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (229) PDF downloads(4) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return