Citation: | LI Na, DENG Yi-xing, LI Guo-de, WU Shi-wei, HU Xiao-min, DAI Lan. COMPARISON OF DIFFERENT BIOFILM CULTURING METHODS IN MBBR FOR OIL SHALE RETORTING WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 59-64,178. doi: 10.13205/j.hjgc.202106010 |
[1] |
KLEIN K,KATTEL E,GOI A,et al.Combined treatment of pyrogenic wastewater from oil shale retorting[J].Oil Shale,2017,34(1):82-96.
|
[2] |
DYNI J R.Geology and resources of some world oil shale deposits[J].Oil Shale,2003,20(3):193-252.
|
[3] |
MATOUQ M,ALAYED O,ALANBER Z,et al.Wastewater treatment resulting from an oil shale retorting at high frequency ultrasound waves with a chemical elemental analysis[J].Energy.Sources Part A,2010,32:1878-1884.
|
[4] |
WARWICK D P,HACKLEY P C.Unconventional energy resources:2013 Review[J].Natural Resources Research,2014,23(1):19-98.
|
[5] |
JIANG S Y,WANG W X,XUE X X,et al.Fungal diversity in major oil-shale mines in China[J].Journal of Environmental Sciences,2016,41:81-89.
|
[6] |
KAMENEV I,MUNTER R,KEKISHEVA L P L.Wastewater treatment in oil shale chemical industry[J].Oil Shale,2003,20(4):443-457.
|
[7] |
李文深,王彩旭,刘洁,等.我国页岩油组成及加工技术的研究进展[J].应用化工,2015,44(7):1318-1322.
|
[8] |
HOU J L,LI S Y,QIAN J L,et al.Resurces and development status of Chinese oil shale[C]//34th Oil Shale Symposium,Colorado School of Mines:Golden,Colorado,2014.
|
[9] |
GUAN X H,XU X H,LU M,et al.Pretreatment of oil shale retort wastewater by acidification and ferric-carbon micro-electrolysis[J].Energy Procedia,2012,17:1655-1661.
|
[10] |
WANG H,LI H B,DU L N.Study on the treatment of oil shale retort wastewater by high performance compact reactor[J].Advanced Materials Research,2013,800:576-579.
|
[11] |
全水清,刘晓舒.磷系混凝剂在油页岩干馏废水处理中的应用[J].南昌航空大学学报(自然科学版),2008,22(3):90-93.
|
[12] |
肖丽光,周文权,曲艳迪.A/O-MBR工艺处理油页岩干馏废水的试验研究[J].工业用水与废水,2014,45(2):23-26.
|
[13] |
李亮,陈文希,于鑫,等.电凝聚强化A/O-MBR处理油页岩废水研究[J].环境工程,2015,33(12):58-62.
|
[14] |
关晓辉,孙丹,宋广亮,等.ABR处理油页岩干馏污水的试验研究[J].工业水处理,2009,29(6):32-35.
|
[15] |
钱壁,陈晨,祝伟,等.膜吸收法去除油页岩干馏污水中的氨氮[J].油气田环境保护,2015,25(3):29-31
,45.
|
[16] |
JENNIFER L S,WILLIAM S M'C,CLAUDIA K G,et al.Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater[J].Bioresource Technology,2012,112:51-60.
|
[17] |
LEE W,KANG I,LEE C.Factors affectingfiltration characteristics in membrane-coupled moving bed biofilm reactor[J].Water Research,2006,40:1827-1835.
|
[18] |
KADIYA C,JAIME M,JOSÉ M,et al.Comparative analysis of the bacterial diversity in a lab-scale moving bed biofilm reactor (MBBR) applied to treat urban wastewater under different operational conditions[J].Bioresource Technology,2012,121:119-126.
|
[19] |
LEYVA-DÍAZ J C,MARTÍN-PASCUAL J,GONZÁLEZ-LÓPEZ J,et al.Effects of scale-up on a hybrid moving bed biofilm reactor-membrane bioreactor for treating urban wastewater[J].Chemical Engineering Science,2013,104:808-816.
|
[20] |
YOUSEF R,ALI T,NASER M,et al.Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor[J].Journal of Hazardous Materials,2011,186:1097-1102.
|
[21] |
KRISTI B,MICHAEL W T,SUSAN J T.Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater[J].Applied Microbiology and Biotechnology,2014,98:1429-1440.
|
[22] |
SCHNEIDER E E,CERQUEIRA A C F P,DEZOTTI M.MBBR evaluation for oil refinery wastewater treatment,with post-ozonation and BAC,for wastewater reuse[J].Water Science & Technology,2011,63(1):143-148.
|
[23] |
张铁,朱晓云.载体移动床生物膜反应器(MBBR)在炼油废水处理工程中的研究与应用[J].内蒙古石油化工,2008,34(6):146-148.
|
[24] |
袁志宇,刘锋,陆大培.A/三级MBBR法处理炼油废水的中试研究[J].精细化工,2009,26(10):1016-1018.
|
[25] |
ESCUDIÉ R,CRESSON R,DELGENÈS J P,et al.Control of start-up and operation of anaerobic biofilm reactors:an overview of 15 years of research[J].Water Research,2011,45(1):1-10.
|
[26] |
李信仕.不同挂膜方式对移动床生物膜反应器启动的影响[J].沈阳建筑大学学报(自然科学版),2012,28(5):921-926.
|
[27] |
黄鹏.好氧移动床生物膜反应器处理PVC高温母液废水研究[D].哈尔滨:哈尔滨工业大学,2007:36-37.
|
[28] |
黄天寅.悬浮填料床的启动与挂膜机理研究[J].中国给水排水,2010,26(17):23-26
,30.
|
[1] | DUAN Huabo, ZHOU Jijiao, ZHAO Nana, LAN Xiaofeng, ZHENG Ruiying, FU Xingrui, CHEN Ying, SUN Jianming. A DIGITAL MANAGEMENT PLATFORM FOR SUPPORTING MUNICIPAL SOLID WASTE CLASSIFICATION: AN APPLICATION CASE OF HUZHOU, ZHEJIANG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 230-238. doi: 10.13205/j.hjgc.202402027 |
[2] | ZHU Yixin, YE Zhen, REN Lingwei, ZHONG Yuchi, ZHOU Wenjun. EXPERIMENTAL STUDY ON MUNICIPAL SOLID WASTE INCINERATION FLY ASH IN CONJUNCTION WITH CONSTRUCTION WASTE TO BURN CERAMICS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 206-212,130. doi: 10.13205/j.hjgc.202312025 |
[3] | JIA Jinming, REN Fumin, HU Shuxin, GUO Changhong, LIU Junshi, MA Li, LU Tong, CUI Can, LIU Guotao, ZHANG Boyu. REGIONAL ENVIRONMENTAL POLLUTION RISK ANALYSIS OF CONSTRUCTION WASTE IN MAJOR URBAN CLUSTERS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 98-105. doi: 10.13205/j.hjgc.202302014 |
[4] | ZHAO Tianrui, LIU Yiming, LÜ Pengzhao, LI Yanliang, TANG Xiaomi, GUO Wei, ZHANG Jun, TIAN Yu. CONSTRUCTION OF LightGBM WASTE PRODUCTION PREDICT MODEL IN A SCENARIO OF ZERO-WASTE CITY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 210-215. doi: 10.13205/j.hjgc.202303028 |
[5] | XU Chong-ping, YUE Qiang, ZHANG Yu-jie, WANG Huan-yu. EVALUATION OF OPTIMIZATION POTENTIAL OF URBAN METABOLIC SYSTEM DRIVEN BY “ZERO-WASTE CITY”: A CASE STUDY IN PANJIN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 224-232. doi: 10.13205/j.hjgc.202209030 |
[6] | YANG Guodong, LAN Tian, SONG Mengzhu, DU Yufeng, LIU Mengdan, SONG Yingchun, JIANG Jianguo. ENGINEERING APPLICATION OF A DRY-WET PRESS SEPARATION-HYDROTHERMAL CARBONIZATION TECHNOLOGY FOR FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 53-60. doi: 10.13205/j.hjgc.202212008 |
[7] | YANG Tao, LIU Peng-yu, XU Ya-qiang, CHEN Dai-jie, JING Mei-ying, CHU Xiao-he. PILOT STUDY ON TREATMENT OF ACARBOSE RESIDUE BY A MULTI-STAGE ANAEROBIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 123-127. doi: 10.13205/j.hjgc.202104019 |
[8] | YU Jin-tao, MA Xiao-yu, ZHANG Chang-bo. AN EFFICIENT SCREENING SYSTEM OF CLAY SOIL PARTICLES IN THE SOIL WASHING REMEDIATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 160-166. doi: 10.13205/j.hjgc.202106024 |
[9] | ZHAO Xi, WU Shan-shan, LU Ke-ding. DEVELOPMENT OF AN EVALUATION SYSTEM FOR ASSESSING CONSTRUCTION LEVEL IN OPERATION OF MUNICIPAL SOLID WASTE COMPREHENSIVE TREATMENT PARK FOR ZERO-WASTE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 136-140,15. doi: 10.13205/j.hjgc.202102022 |
[10] | YANG Shu-jun, ZHANG Chen, HE Jun, XIONG Jian-ying, LI Xue-ting, HUANG Xiao-wen. ENGINEERING APPLICATION OF NANOFILTRATION & THREE-LEVELS REDUCTION OF NANOFILTRATION CONCENTRATE TECHNOLOGY FOR ADVANCED TREATMENT OF LANDFILL LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 81-87,114. doi: 10.13205/j.hjgc.202006013 |
[11] | WANG Ruo-fei, ZHANG Guang-zhi, WANG Ning, REN Fu-min, CHEN Rui, XI Cheng-gang. ANALYSIS ON DOMESTIC AND FOREIGN CONSTRUCTION AND DEMOLITION WASTE RELATED STANDARDS AND PATENTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 27-32. doi: 10.13205/j.hjgc.202003005 |
[12] | QI Guo-ping, LI Wei-wei, NIU Yong-jian, NING Gao-yang, SUN Hong-wei. EXPERIMENTAL STUDY ON REDUCTION OF OXYTETRACYCLINE RESIDUE BY ALKALINITY OF NaOH’s DOSAGES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 140-144,151. doi: 10.13205/j.hjgc.202011023 |
[13] | ZENG Guang, LI Fang-fang, TANG Tang, LU Guan-you, LEI Guo-yuan. CONSTRUCTION WASTE REDUCTION TECHNOLOGY BASED ON CLEAN PRODUCTION CONCEPT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 138-143. doi: 10.13205/j.hjgc.202005024 |
1. | 陈肖,陈峰. 基于HLCMEA-SWRELM的水体pH值预测. 计算机应用与软件. 2024(02): 123-129 . ![]() | |
2. | 王彩玲,张国浩. 结合光谱降维的IPSO-SVR水体总磷浓度预测模型. 水土保持通报. 2024(02): 196-204 . ![]() | |
3. | 杜先君,柴俊伟. 基于优化特征选择的污水处理过程BOD神经网络软测量模型. 兰州理工大学学报. 2024(06): 85-91 . ![]() | |
4. | 倪浩然,张坤,陈曦,白晓波,郑守磊. 基于遗传-支持向量回归算法的计量标准稳定性预测研究. 计量与测试技术. 2024(12): 102-105+108 . ![]() | |
5. | 胡龙元,刘黎志. 基于改进鲸鱼算法优化GRU-CNN的溶解氧预测. 环境工程学报. 2024(10): 2957-2964 . ![]() | |
6. | 杨坪宏,胡奥,崔东文,杨杰. 基于数据处理与若干群体算法优化的 GRU/LSTM水质时间序列预测. 水资源与水工程学报. 2023(04): 45-53 . ![]() | |
7. | 罗学刚,吕俊瑞. 基于张量特征-GRU和多头自注意力机制的水质预测模型方法. 攀枝花学院学报. 2023(05): 89-96 . ![]() | |
8. | 吴瑞姣. 基于BP-SVR混合模型的古田水库总磷浓度遥感反演. 福建地质. 2023(03): 224-230 . ![]() | |
9. | 许浩然,陈中举,杨兆前,房梦婷,詹炜. 基于Prophet模型的湖北省月降水量预测. 节水灌溉. 2022(02): 7-12+20 . ![]() | |
10. | 董陈超,田明昊,赵伟朝. 基于GA优化的RF-Softmax水质预测模型研究. 湖北农业科学. 2022(07): 60-65+82 . ![]() | |
11. | 王昱文,杜震洪,戴震,刘仁义,张丰. 基于复合神经网络的多元水质指标预测模型. 浙江大学学报(理学版). 2022(03): 354-362+375 . ![]() | |
12. | 石翠翠,刘媛华,陈昕. 基于粒子群算法优化支持向量回归的水质预测模型. 信息与控制. 2022(03): 307-317 . ![]() | |
13. | 李俊禹,刘书明,吴雪,谢涛,金晔. 基于动态剪枝的城市供水管网优化调度算法. 环境工程. 2022(06): 226-232+153 . ![]() | |
14. | 白雯睿,杨毅强,朱雪芹. 基于VMDLSTNet的水质预测模型. 科学技术与工程. 2022(22): 9881-9889 . ![]() | |
15. | 史利涛. 基于数据挖掘的城市人居环境河流水质变化监测模型设计. 四川环境. 2022(04): 219-224 . ![]() | |
16. | 白雯睿,杨毅强,郭辉,朱雪芹. 基于VMD-CNN-LSTM的珠江流域水质多步预测模型研究. 四川轻化工大学学报(自然科学版). 2022(04): 66-74 . ![]() | |
17. | 白雯睿,杨毅强,李强. 引入小波分解的Seq2Seq水质多步预测模型研究. 现代电子技术. 2022(17): 100-105 . ![]() | |
18. | 盛家豪,钱进,王一桂,黄凤启. 基于GA-SVR的循环流化床锅炉床温预测. 智能计算机与应用. 2022(09): 105-109 . ![]() | |
19. | 凌从高,穆溪,许敏,王思晨,赵秋雨,江鹏. 湿地生态系统实际蒸散发数据驱动估算模型研究. 安徽农业大学学报. 2022(05): 771-779 . ![]() | |
20. | 曹斐,周彧,王春晓,任梦宇,周峰. 一种改进的支持向量回归的混凝土强度预测方法. 硅酸盐通报. 2021(01): 90-97 . ![]() | |
21. | 孟滔. 改进粒子群算法优化SVR水质预测模型研究. 农业与技术. 2021(03): 33-36 . ![]() | |
22. | 孟滔. 支持向量回归水质预测模型的研究进展. 绿色科技. 2021(08): 77-79 . ![]() | |
23. | 王旭生,王昕,孙晓川. 改进RVM预测海水水质. 计算机工程与设计. 2021(12): 3562-3568 . ![]() | |
24. | 梁小林,秦欢,陈敏茹,许奇,梁曌. 基于Adaboost-SVR模型的我国碳排放强度分析与预测. 经济数学. 2020(03): 167-174 . ![]() | |
25. | 何山,尹心安. 不同入流类型对生态流量管理效果的影响. 环境工程. 2020(10): 76-82 . ![]() |