Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XUE Tong-lai, ZHAO Dong-hui, HAN Fei. SVR WATER QUALITY PREDICTION MODEL BASED ON GA OPTIMIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 123-127. doi: 10.13205/j.hjgc.202003021
Citation: FAN Hao, SHEN Zhen-xing, LU Jia-qi, CHANG Tian, HUANG Yu. THE ACTIVE SITES AND PERFORMANCE OF Mn1Cex/HZSM-5 CATALYST FOR FORMALDEHYDE REMOVAL AT ROOM TEMPERATURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 99-105. doi: 10.13205/j.hjgc.202106015

THE ACTIVE SITES AND PERFORMANCE OF Mn1Cex/HZSM-5 CATALYST FOR FORMALDEHYDE REMOVAL AT ROOM TEMPERATURE

doi: 10.13205/j.hjgc.202106015
  • Received Date: 2020-09-22
    Available Online: 2022-01-18
  • Formaldehyde caused by indoor decoration has serious impact on human health, the need to reduce formaldehyde at room temperature is increasingly urgent. At present, room temperature catalytic oxidation is regarded as one of the most promising formaldehyde treatment methods. Zeolite molecular sieve has a large specific surface area and more adsorption sites. In this paper, with zeolite molecular sieve as the carrier, and MnOx and CeOx as reaction active sites, Mn1Cex/HZSM-5 catalyst was successfully synthesized through co-precipitation method. The catalyst degraded 96.86% of formaldehyde at room temperature and had good working stability. In addition, through a series of physical and chemical characterization analysis, it was found that Ce species could not only significantly improve the content of high-valent manganese in the catalyst, but also bring more surface hydroxyl and oxygen adsorption, thus improving the performance of the catalyst. In view of its excellent and stable performance and simple synthesis method, this highly efficient formaldehyde removal catalyst, Mn1Cex/HZSM-5 could provide a novel reference for the synthesis of formaldehyde removal catalyst at room temperature.
  • [1]
    中国测试技术研究院化学所,四川省弗里曼环境科技有限公司.2019中国室内空气污染状况白皮书[M].2019.
    [2]
    刘学,刘付建.家居环境中甲醛的毒性及其控制[J].环境与发展,2017(4):64-65.
    [3]
    陈丹,李汶菁,肖瑜,等.羟基改性Ag/MCM-41催化剂上甲醛的催化氧化性能[J].环境工程,2019,37(5):155-159.
    [4]
    住房和城乡建设部.民用建筑工程室内环境污染控制标准:GB 50325-2020[S].2020.
    [5]
    李娟娟,张梦,蔡松财,等.光热催化氧化VOCs的研究进展[J].环境工程,2020,38(1):13-20.
    [6]
    LI L C,LI L,WANG L,et al.Enhanced catalytic decomposition of formaldehyde in low temperature and dry environment over silicate-decorated titania supported sodium-stabilized platinum catalyst[J].Applied Catalysis B:Environmental,2020,277:191296-191305.
    [7]
    LIU X S,LU J Q,QIAN K,et al.A comparative study of formaldehyde and carbon monoxide complete oxidation on MnOx-CeO2 catalysts[J].Journal of Rare Earths,2009,27(3):418-424.
    [8]
    LIU G,YUE R L,JIA Y,et al.Catalytic oxidation of benzene over Ce-Mn oxides synthesized by flame spray pyrolysis[J].Particuology,2013,11(4):454-459.
    [9]
    ZHANG Y,CHEN M X,ZHANG Z X,et al.Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature:promotional effect of relative humidity on the MnCeOx solid solution[J].Catalysis Today,2019,327:323-333.
    [10]
    曹利,连子,黄学敏.MnCeOx/沸石催化剂对工业典型VOCs的催化性能[J].环境工程,2020,38(1):48-53.
    [11]
    章凌.沸石分子筛负载Pt催化剂室温催化氧化甲醛[D].杭州:浙江大学,2017.
    [12]
    HU P D,NAKAMURA K,MATSUBARA H,et al.Comparative study of direct methylation of benzene with methane on cobalt-exchanged ZSM-5 and ZSM-11 zeolites[J].Applied Catalysis A:General,2020,601:117661-117668.
    [13]
    ZHANG X,SU L F,KONG Y L,et al.CeO2 nanoparticles modified by CuO nanoparticles for low-temperature CO oxidation with high catalytic activity[J].Journal of Physics and Chemistry of Solids,2020,147:109651-109660.
    [14]
    HONG W J,IWAMOTO S,HOSOKAWA S,et al.Effect of Mn content on physical properties of CeOx-MnOy support and BaO-CeOx-MnOy catalysts for direct NO decomposition[J].Journal of Catalysis,2011,277(2):208-216.
    [15]
    HE C,YU Y K,CHEN C W,et al.Facile preparation of 3D ordered mesoporous CuOx-CeO2 with notably enhanced efficiency for the low temperature oxidation of heteroatom-containing volatile organic compounds[J].RSC Advances,2013,3(42):19639-19656.
    [16]
    WANG Y,DENG W,WANG Y F,et al.A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides[J].Molecular Catalysis,2018,459:61-70.
    [17]
    JIANG L J,LIU Q C,RAN G J,et al.V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO[J].Chemical Engineering Journal,2019,370:810-821.
    [18]
    HUSSAIN S T,SAYARI A,LARACHI F.Enhancing the stability of Mn-Ce-O WETOX catalysts using potassium[J].Applied Catalysis B:Environmental,2001,34:1-9.
    [19]
    WANG T,CHEN S,WANG H Q,et al.In-plasma catalytic degradation of toluene over different MnO2 polymorphs study of reaction mechanism[J].Chinese Journal of Catalysis,2017,38(5):793-804.
    [20]
    CHEN X B,WANG H Q,GAO S,et al.Effect of pH value on the microstructure and deNOx catalytic performance of titanate nanotubes loaded CeO2[J].Journal of Colloid and Interface Science,2012,377(1):131-136.
    [21]
    ZHANG C B,LIU F D,ZHAI Y P,et al.Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J].Angewandte Chemie International Edition,2012,51(38):9628-9632.
    [22]
    SHU Y J,HE M,JI J,et al.Synergetic degradation of VOCs by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5[J].Journal of Hazardous Materials,2019,364:770-779.
    [23]
    MARTIN S,ULRICH A,PHILIPP S,et al.Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101)[J].Science,2013,341:988-991.
    [24]
    TANG X F,LI Y G,HUANG X M,et al.MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:effect of preparation method and calcination temperature[J].Applied Catalysis B:Environmental,2006,62(3/4):265-273.
    [25]
    WEN Y R,TANG X,LI J H,et al.Impact of synthesis method on catalytic performance of MnOx-SnO2 for controlling formaldehyde emission[J].Catalysis Communications,2009,10(8):1157-1160.
    [26]
    JIN Q J,SHEN Y S,ZHU S M,et al.Effect of praseodymium additive on CeO2(ZrO2)/TiO2 for selective catalytic reduction of NO by NH3[J].Journal of Rare Earths,2016,34(11):1111-1120.
  • Relative Articles

    [1]WANG Yihang, FENG Xiaonan, WANG Zongping, YUAN Jianwei, ZHU Zhihuai, LIANG Mu, MA Jie, GUO Gang, WAN Peng, CHEN Zhenbin, ZUO Liang. SCHEDULING OPTIMIZATION OF DOMESTIC WASTE TRANSFER SYSTEMS BASED ON DIGITAL TWINNING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 199-205. doi: 10.13205/j.hjgc.202405025
    [2]WU Kunlun, GONG Zhiqi, WU Jia. DYNAMIC OPTIMIZATION OF LAYOUT OF CONSTRUCTION WASTE RECYCLING FACILITIES: A CASE STUDY OF XINING, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 194-201,258. doi: 10.13205/j.hjgc.202306026
    [3]YU Feng, WANG Kejia, ZHANG Wenlong, LI Yi. PREDICTION OF COAGULANT DOSAGE FOR IN-SITU TURBIDITY CONTROL IN WATER ECOLOGICAL RESTORATION BASED ON BP NEURAL NETWORK OPTIMIZED BY GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 154-163. doi: 10.13205/j.hjgc.202304022
    [4]WANG Jianlong, ZHANG Changhe, XI Guangpeng. A NOVEL VOLUME OPTIMIZATION METHOD FOR DETENTION TANKS FOR FLOODING IMMIGRATION BASED ON MULTI-OBJECTIVE GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 166-173. doi: 10.13205/j.hjgc.202306022
    [5]PANG Min, WANG Jingxian, XU Ruichen. OPTIMIZATION OF WATER DIVERSION SCHEME OF CHAO LAKE BY IMPROVED WATER QUALITY OVER-STANDARD RATE ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 74-80. doi: 10.13205/j.hjgc.202203012
    [6]LI Hongzhe, WANG Shijie, LI Chengming. ANALYSIS OF THE DIFFERENCE BETWEEN GF-6 AND LANDSAT-8 IN WATER QUALITY MONITORING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 196-201. doi: 10.13205/j.hjgc.202204028
    [7]ZHENG Qiongqi, LIN Yiyuan, YIN Hailong, XU Zuxin, SU Lei, WU Shanshan. SOURCE TRACKING OF WASTEWATER DISCHARGE INTO RIVERS USING HYDRODYNAMIC DIFFUSION WAVE MODEL AND GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 63-69. doi: 10.13205/j.hjgc.202206008
    [8]ZHANG Qiang, WANG Mei-rong, ZHANG Shu-han, GONG Ying-an, WANG Li-jing, CAO Xiu-qin. DEVELOPMENT OF AN AUTOMATIC SAMPLING TECHNOLOGY FOR URBAN RAINFALL RUNOFF QUALITY MONITORING AND ITS APPLICATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 141-144,150. doi: 10.13205/j.hjgc.202004025
    [13]Ren Jinxia Yu Zhiwu You Xin, . MODEL FOR WATER QUALITY EVALUATION BASED ON WAVELET NEURAL NETWORK OF ADAPTIVE GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 144-148. doi: 10.13205/j.hjgc.201505031
  • Cited by

    Periodical cited type(9)

    1. 邱军付,张瑞峰,章银祥,张晔,张佳阳. 建筑垃圾分离渣土热活化研究及其在盾构注浆料中的应用. 新型建筑材料. 2024(03): 1-5+28 .
    2. 黎嘉敏,张杰,陈广贤,田浩,谢向阳,区建峰,柏静. 基于无废工地理念的施工建筑废料减排实践. 施工技术(中英文). 2024(08): 100-104 .
    3. 毛鹏,孙小宇,顾素素,戴兆华. 基于系统动力学的建筑废弃物可持续管理及实证研究. 土木工程与管理学报. 2022(01): 68-74 .
    4. 刘恒,孙晓辉,牟松,周学彬,李恒,陈湘生. 盾构渣土资源化处理工艺及成套系统装备研究. 隧道建设(中英文). 2022(02): 320-327 .
    5. 尹曾甫,迂晓轩,梁琨,齐贺,高昊元,刘津赫,王星云,丁艳玲. 建筑垃圾尾料改良制园林绿化土. 建筑节能(中英文). 2022(04): 139-144 .
    6. 宋晓芳,郭琪璇. 郑州市建筑垃圾减量化对策研究. 居舍. 2022(15): 167-169 .
    7. 刘星,肖绪文,于震平,黄宁. 基于绿色建造的建筑垃圾成因分析与减量化措施研究. 施工技术. 2021(03): 1-4 .
    8. 郑凯方,温宗国,陈燕. “无废城市”建设推进政策及措施的国别比较研究. 中国环境管理. 2020(05): 48-57 .
    9. 姜健,娄建明,马亮. 基于物联网技术的城市建筑垃圾一体化智慧管理系统设计. 产业科技创新. 2020(24): 21-22 .

    Other cited types(12)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.5 %FULLTEXT: 10.5 %META: 88.7 %META: 88.7 %PDF: 0.8 %PDF: 0.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.1 %其他: 12.1 %China: 0.4 %China: 0.4 %[]: 0.4 %[]: 0.4 %上海: 2.9 %上海: 2.9 %东莞: 2.5 %东莞: 2.5 %临汾: 0.4 %临汾: 0.4 %丽水: 0.8 %丽水: 0.8 %佛山: 0.8 %佛山: 0.8 %北京: 1.7 %北京: 1.7 %十堰: 0.4 %十堰: 0.4 %南京: 3.3 %南京: 3.3 %南通: 1.7 %南通: 1.7 %台州: 2.1 %台州: 2.1 %大连: 0.4 %大连: 0.4 %天津: 0.8 %天津: 0.8 %宁波: 0.4 %宁波: 0.4 %常州: 0.4 %常州: 0.4 %常德: 0.4 %常德: 0.4 %张家口: 0.8 %张家口: 0.8 %成都: 1.3 %成都: 1.3 %昆明: 1.3 %昆明: 1.3 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.4 %朝阳: 0.4 %杭州: 1.7 %杭州: 1.7 %武汉: 1.3 %武汉: 1.3 %济南: 1.7 %济南: 1.7 %济源: 0.8 %济源: 0.8 %温州: 0.8 %温州: 0.8 %湖州: 2.9 %湖州: 2.9 %漯河: 0.4 %漯河: 0.4 %盐城: 1.3 %盐城: 1.3 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.4 %福州: 0.4 %芒廷维尤: 29.7 %芒廷维尤: 29.7 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.4 %苏州: 0.4 %荆州: 0.4 %荆州: 0.4 %衢州: 0.8 %衢州: 0.8 %西宁: 10.5 %西宁: 10.5 %西安: 0.4 %西安: 0.4 %贵阳: 0.4 %贵阳: 0.4 %运城: 4.2 %运城: 4.2 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.8 %郑州: 0.8 %重庆: 0.4 %重庆: 0.4 %银川: 0.4 %银川: 0.4 %长沙: 0.4 %长沙: 0.4 %长治: 0.4 %长治: 0.4 %青岛: 0.8 %青岛: 0.8 %其他China[]上海东莞临汾丽水佛山北京十堰南京南通台州大连天津宁波常州常德张家口成都昆明晋城朝阳杭州武汉济南济源温州湖州漯河盐城石家庄福州芒廷维尤芝加哥苏州荆州衢州西宁西安贵阳运城遵义邯郸郑州重庆银川长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (212) PDF downloads(4) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return