Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Yiwei, LI Benhang, WEI Zizhang, LIU Xiaoyao, HE Xu, LIANG Gaolei, MA Xiaodong. PREPARATION AND LOW-TEMPERATURE DENITRIFICATION PROPERTIES OF Mn-DOPED POROUS CAROBON MATRIX COMPOSITE FUNCTIONAL MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 112-120. doi: 10.13205/j.hjgc.202410014
Citation: TIAN Han-xin, WANG Jia-jun, ZHOU Lei, XU De-fu, ZHANG Jian-wei, PENGCUO Ci-ren. WATER QUALITY STATUS AND POLLUTION ASSESSMENT OF LHALU WETLAND IN TIBET IN DIFFERENT PERIODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 198-206. doi: 10.13205/j.hjgc.202106030

WATER QUALITY STATUS AND POLLUTION ASSESSMENT OF LHALU WETLAND IN TIBET IN DIFFERENT PERIODS

doi: 10.13205/j.hjgc.202106030
  • Received Date: 2020-04-13
    Available Online: 2022-01-18
  • The water quality of Lhalu wetland was analyzed in December 2018(dry season) and May 2019(wet season), based on field investigation and indoor analysis.Resultsshowed that total nitrogen, total phosphorus and ammonia nitrogen were 0.157~26.797 mg/L, 0.003~4.259 mg/L and 0.197~24.084 mg/L, and pH, conductivity and dissolved oxygen were 6.99~9.55, 72.85~583.50 μS/cm and 1.83~12.84 mg/L, respectively, during the dry season. Total nitrogen, total phosphorus, ammonia nitrogen, pH, conductivity and dissolved oxygen were 0.077~3.104 mg/L, 0.004~0.228 mg/L, 0.005~0.094 mg/L, 6.94~9.27, 129.90~512.87 μS/cm and 1.12~12.18 mg/L, respectively, in wet season. The average conductivity of the water body from Lhalu wetland was lower in dry season than in wet season. However, higher average dissolved oxygen, pH, total nitrogen, total phosphorus, ammonia nitrogen and COD concentrations were found in dry season than in wetland season. The average conductivity of the water body was significantly negatively correlated with pH(P<0.01), but it was significantly positively correlated with ammonia nitrogen and total phosphorus(P<0.01).Resultsfrom improved Nemero Pollution Index evaluation method showed that the water quality of Lhalu wetland was mostly Class V during the dry season and pollutant were mainly distributed in the northeast areas of Lhalu wetland; the water quality was mainly Class I and Ⅲ during the wet season, and pollutants were mainly distributed in the central and southern area of Lhalu wetland.
  • [1]
    张海波.上徐家河水质现状与评价[J].广东化工,2019,46(14):65-69.
    [2]
    WANG C H,HOU Y L,XUE Y J.Water resources carrying capacity of wetlands in Beijing:analysis of policy optimization for urban wetland water resources management[J].Journal of Cleaner Production,2017,161:1180-1191.
    [3]
    NIU Z G,ZHANG H Y,WANG X W,et al.Mapping wetland changes in China between 1978 and 2008[J].Chinese Science Bulletin,2012,57(22):2813-2823.
    [4]
    李路祥,李金城,韦春满,等.广西会仙湿地水质现状分析与评价[J].桂林理工大学学报,2019,39(3):693-699.
    [5]
    方玉升,王晓艳,崔国屹,等.陕西澽水河水质现状评价与分析[J].湿地科学与管理,2019,15(2):54-58.
    [6]
    王佐霖,马鹏飞,张卫强,等.深圳坝光湿地地表水水环境质量评价[J].林业与环境科学,2019,35(4):9-17.
    [7]
    牛富霞,任东.模糊数学与单因子水环境评价方法特性分析[J].地下水,2019,41(5):46-47.
    [8]
    LIU F,WANG X,ZHU P.Analysis of distribution and environmental assessment of antimony in collapse lake waters of Huaibei mining areas[J].Zhongguo Kexue Jishu Daxue Xuebao/Journal of University of Science and Technology of China,2012,42(1):26-30.
    [9]
    申震,张磊,沈军,等.高邮湖水环境质量评价与分析[J].黑龙江工程学院学报,2019,33(6):28-32.
    [10]
    汤玉强,李清伟,左婉璐,等.内梅罗指数法在北戴河国家湿地公园水质评价中的适用性分析[J].环境工程,2019,37(8):195-199.
    [11]
    KOU W J,LIN J,CHEN Z R,et al.Existing problems and modifications of using Nemerow index method in water quality assessment[J].South-to-North Water Diversion and Water Science & Technology,2012,10(4):39-41,47.
    [12]
    王竹,朱士江,刘扬,等.不同水质评价方法在滦河下游段的比较应用[J].节水灌溉,2019(10):68-72.
    [13]
    马腾飞,邱一富.改进的内梅罗污染指数法在鉴江水质评价中的应用[J].广东石油化工学院学报,2019,29(3):91-94.
    [14]
    韩术鑫,王利红,赵长盛,等.内梅罗指数法在环境质量评价中的适用性与修正原则[J].农业环境科学学报,2017,36(10):2153-2160.
    [15]
    吴喜军,董颖,张亚宁.改进的内梅罗污染指数法在黄河干流水质评价中的应用[J].节水灌溉,2018(10):51-53.
    [16]
    路飞,许先鹏,鲜明睿,等.拉萨市城市规划区湿地保护现状与对策[J].林业调查规划,2019,44(1):143-147.
    [17]
    白永飞,黄伟,罗笑娟,等.拉鲁湿地水中主要金属元素分布分析评价[J].环境科学与技术,2016,39(6):174-178.
    [18]
    张文驹,张潇潇.拉鲁湿地水质评价与分析[J].安徽农业科学,2014,42(5):1477-1478.
    [19]
    巴桑,黄香,普布,等.拉鲁湿地肉鞭虫群落特征及其水环境评价[J].湿地科学,2014,12(2):182-191.
    [20]
    周欢欢,刘引鸽,胡浩楠.宝鸡市东沙河流域水质污染评价[J].四川环境,2019,38(3):30-35.
    [21]
    国家环保总局.国家质量监督检验检疫总局.地表水环境质量标准:GB 3838-2002[S].2002.
    [22]
    韩龙飞.石砭峪水库不同混合期水质及藻类生长规律研究[D].西安:西安建筑科技大学,2014.
    [23]
    巴秋爽.镜泊湖浮游植物多样性及环境相关性研究[D].哈尔滨:哈尔滨师范大学,2017.
    [24]
    李红海,夏梦雨,冯德金.襄阳汉江国家湿地公园水质分析及植物分布与水质的关系[J].江汉大学学报(自然科学版),2019,47(6):572-576.
    [25]
    曾凯,王家生,章运超,等.华阳河湖群水位变化对水质的影响分析[J/OL].长江科报:1-7[2020-06-27

    ].https://cc0eb1c56d2d940cf2d0186445b0c858.vpn.nuist.edu.cn/kcms/detail/42.1171.TV.20190802.1727.014.html.
    [26]
    顾平,万金保.鄱阳湖水文特征及其对水质的影响研究[J].环境污染与防治,2011,33(3):15-19.
    [27]
    李艳红,成静清,夏丽丽,等.鄱阳湖区水体溶解氧现状及环境影响因素分析[J].中国农村水利水电,2013(10),122-125.
    [28]
    张雪,周洵,李琴,等.太湖原水pH值季节性变化规律及突变成因探索[J].供水技术,2015,9(5):13-17.
    [29]
    邢梦龙,李海翔,姜磊,等.临桂新区环城水系及会仙岩溶湿地水污染时空特征[J].桂林理工大学学报,2019,39(1):168-176.
    [30]
    李进.盐碱地沟渠湿地水文水质特性初步研究[D].西安:西安理工大学,2010.
    [31]
    文泽伟.典型黑臭风水塘水体pH值对底泥中NH3-N、TP释放影响的研究[J].广东化工,2019,46(6):158-159.
    [32]
    李红清,王岚.鄱阳湖枯期水位与湿地生态响应关系[J].中国水利,2018(11):23-26.
    [33]
    关云鹏.利用内梅罗指数法模型评价地下水水质的探讨[J].山西水利科技,2012(1):81-84.
    [34]
    孙艳,陈景.改进内梅罗指数模型在水质评价中的应用探讨[J].广西水利水电,2018(5):56-59.
    [35]
    吴青梅,罗慧东,孙国萍,等.典型感潮内河涌水质污染特征调查研究[J].环境科学学报,2011,31(10):2210-2216.
    [36]
    王玮.水生和陆生植物对污水中污染物的净化功能及其机理[D].南宁:广西大学,2019.
    [37]
    萨茹拉.妫水河受损生境特征分析与水生植物群落修复生境研究[D].郑州:华北水利水电大学,2019.
    [38]
    王佳俊,田瀚鑫,周磊,等.拉鲁湿地水生植物群落多样性与水环境因子的关系[J].环境科学,2020,41(4):1657-1665.
    [39]
    马广文,王业耀,香宝,等.阿什河丰水期氮污染特征及其来源分析[J].环境科学与技术,2014,37(11):116-120.
  • Relative Articles

    [1]WANG Yan, WANG Jie, XIE Zijian, LI Chunhua, YE Chun, MIAO Kexin, WEI Weiwei, ZHENG Ye. NON-POINT SOURCE POLLUTIONS IN TYPICAL RIVER BASINS IN HILLY AND MOUNTAINOUS AREAS AND PLAIN RIVER NETWORK AREA IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 33-40. doi: 10.13205/j.hjgc.202410005
    [2]PENG Yuyao, LI Panwu, GAO Xiaobo, YU Huibin, GUO Xujing. EFFECT OF LOESS FLOCCULANT ON WATER PURIFICATION AND DISSOLVED ORGANIC MATTER REMOVAL IN SHAHU LAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 140-146. doi: 10.13205/j.hjgc.202305019
    [3]WANG Yiming, DING Lu, XU Jiaying, SHI Lei, LIU Yifan, LIANG Wenbo, YANG Xiaoli. CONSTRUCTION OF MICRO-ECOSYSTEM IN RURAL RIVERS AND IN-SITU REMEDIATION ON THE SEDIMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 54-60. doi: 10.13205/j.hjgc.202211008
    [4]WANG Gang, WO Yubao, MAO Jingqiao, XIAO Yang, PENG Jirong. SPATIO-TEMPORAL VARIATION ANALYSIS OF WATER QUALITY IN SLUICE-CONTROLLED URBAN RIVER BASED ON TWO-STEP CLUSTER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 117-122,160. doi: 10.13205/j.hjgc.202201017
    [5]WANG Xin-wen, LIU Zi-qi, GUO Qiong-qiong, LI Yuan, LI Kai-ping, ZHANG Chen-yue. SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS AND POLLUTION SOURCE EVALUATION OF WATER QUALITY IN THE HUANGZHOUHE RIVER BASIN, GUIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 69-75. doi: 10.13205/j.hjgc.202109011
    [6]ZHOU Guo-hua, ZHANG Bei, WANG Gang, LI Meng-meng, CHEN Liang. ANALYSIS OF ODOR SOURCES IN STORMWATER PUMP POOL AND STORMWATER PIPE OF A STORMWATER PUMP STATION IN THE SINO-SINGAPORE TIANJIN ECO-CITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 30-35,127. doi: 10.13205/j.hjgc.202104006
    [7]GU Jia-yan, TIAN Hong, YIN Hui, HE Guo-fu, XU Yue-qing. VARIATION CHARACTERISTICS IN WATER ENVIRONMENT OF DIFFERENT TAILWATER RECEIVING RIVERS IN WINTER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 64-69. doi: 10.13205/j.hjgc.202101009
    [8]QI Er-bing, HUANG Ya-ji, YUAN Qi, HU Hua-jun, FAN Cong-hui, CAO Yan-yan, DING Shou-yi. LIME COAGULATION-SUBMERGED EVAPORATION SYNERGISTIC TREATMENT FOR NANOFILTRATION MEMBRANE CONCENTRATE OF LANDFILL LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 54-58,77. doi: 10.13205/j.hjgc.202012010
    [16]Wang Zaifeng, Zhang Shuiyan, Zhang Huaicheng, Zhao Hong, Ji Yaqin. SOURCE APPORTIONMENT TECHNOLOGY OF RIVER POLLUTION SOURCE BY WATER QUALITY MODEL COUPLING WITH CMB MODEL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 135-139. doi: 10.13205/j.hjgc.201502030
  • Cited by

    Periodical cited type(7)

    1. 谢作杰,董鹏宇,尹苗,邓永涛,陈希文. 微生态制剂的作用机制及其在家禽健康养殖中的应用. 黑龙江畜牧兽医. 2025(01): 15-19 .
    2. 赵悦,王春霞,赵梅云. 生态养殖模式在畜禽养殖中的应用. 现代农村科技. 2025(02): 77-78 .
    3. 董堃,唐宇坤,周欣雨,黄浩宇,王敦球,李海翔. 桂林市青狮潭水库沉积物抗生素污染特征及风险评估. 农业环境科学学报. 2024(01): 143-151 .
    4. 陈进,王亚娟,陶红,张锐. 规模化养殖园区土壤中抗生素污染特征和生态风险评价. 环境科学. 2024(07): 4302-4311 .
    5. 徐春燕,凌海波,张姝,向罗京,李苇苇,明德,易川. 湖北省四湖流域典型抗生素分布特征及生态风险评估. 安全与环境工程. 2023(05): 213-221 .
    6. 张亚萍,拓田田,李金金. 抗生素在多介质中污染现状研究进展. 山西化工. 2023(09): 50-52 .
    7. 张文斌,赵晶,张秀,王俭,刘灿,杨海蓉. 重庆市水环境中抗生素的污染特征及其风险评价. 生态毒理学报. 2023(06): 314-324 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.3 %FULLTEXT: 18.3 %META: 78.8 %META: 78.8 %PDF: 2.9 %PDF: 2.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.3 %其他: 10.3 %China: 0.3 %China: 0.3 %[]: 0.3 %[]: 0.3 %临汾: 0.3 %临汾: 0.3 %丽水: 1.8 %丽水: 1.8 %北京: 2.9 %北京: 2.9 %南京: 0.9 %南京: 0.9 %南昌: 0.3 %南昌: 0.3 %南通: 0.3 %南通: 0.3 %台州: 6.8 %台州: 6.8 %常州: 0.3 %常州: 0.3 %常德: 0.3 %常德: 0.3 %广州: 0.9 %广州: 0.9 %张家口: 0.6 %张家口: 0.6 %成都: 1.2 %成都: 1.2 %拉萨: 0.9 %拉萨: 0.9 %日喀则: 0.9 %日喀则: 0.9 %昆明: 1.5 %昆明: 1.5 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 4.4 %杭州: 4.4 %武汉: 0.3 %武汉: 0.3 %汕头: 0.6 %汕头: 0.6 %济源: 0.3 %济源: 0.3 %湖州: 5.6 %湖州: 5.6 %湛江: 0.3 %湛江: 0.3 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.6 %石家庄: 0.6 %芒廷维尤: 31.0 %芒廷维尤: 31.0 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.3 %苏州: 0.3 %衢州: 7.7 %衢州: 7.7 %西宁: 9.7 %西宁: 9.7 %西安: 0.6 %西安: 0.6 %贵阳: 0.3 %贵阳: 0.3 %运城: 3.5 %运城: 3.5 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %长治: 0.3 %长治: 0.3 %其他China[]临汾丽水北京南京南昌南通台州常州常德广州张家口成都拉萨日喀则昆明晋城朝阳杭州武汉汕头济源湖州湛江漯河石家庄芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (266) PDF downloads(10) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return