Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DAI Liang, ZHAO Wei-fan, ZHANG Hong-wei, HAN Tao, ZHANG Kang. RESEARCH PROGRESS ON ADSORPTION OF HEAVY METALS BY SEWAGE SLUDGE-BASED BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 70-77. doi: 10.13205/j.hjgc.202012013
Citation: KONG Zhe, WU Jiang, RONG Chao, WANG Tian-jie, LI Lu, HUANG Yong, LI Yu-you. OPERATION PERFORMANCE AND MASS BALANCE OF A LARGE PILOT-SCALE ANAEROBIC MEMBRANE BIOREACTOR(AnMBR) FOR MUNICIPAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 94-100. doi: 10.13205/j.hjgc.202107011

OPERATION PERFORMANCE AND MASS BALANCE OF A LARGE PILOT-SCALE ANAEROBIC MEMBRANE BIOREACTOR(AnMBR) FOR MUNICIPAL WASTEWATER TREATMENT

doi: 10.13205/j.hjgc.202107011
  • Received Date: 2021-01-15
    Available Online: 2022-01-18
  • The operation performance and mass balance of a large pilot-scale anaerobic membrane bioreactor(AnMBR) in treating real municipal wastewater was investigated, by using a demonstration plant in Sendai, Japan, at a temperature of 25℃ under the control of an automatic system. This plant with 5.0 m3 effective volume was the largest one-stage submerged AnMBR that has ever applied to the treatment of municipal wastewater. During the long-term operation of 217 days, this AnMBR system realized a low hydraulic retention time(HRT) of 6 h, obtaining excellent effluent quality with the COD removal efficiency over 90% and BOD5 removal rate over 95%. Biogas was successfully recovered from municipal wastewater with a biogas production of 0.5 L/g removed COD and 0.09~0.10 L/L raw wastewater, and the methane content in the biogas was over 75%. The sludge yield of the AnMBR was approximately 0.19~0.26 g MLSS/g COD. The suspended solid(SS) contained in the municipal wastewater was completely removed by the AnMBR, while the SS conversion efficiency was 34%~43%. The COD and nitrogen mass balance were also identified based on the experimental results. Under the operation mode of 4 min for permeating and 1 min for relaxing with a biogas sparging flow rate of 0.9 m3/min, the hollow-fiber membrane module with a total area of 72 m2 was able to realize a max flux of 17.75 L/(m2·h), and the highest mean transmembrane pressure(TMP) was 23.5 kPa. An online backwash chemical cleaning system helped reduce the TMP timely. However, the TMP increased rapidly during the HRT of 6 h and a weekly online backwash was necessary. This is the first report of successful operation and detail performance of a large scale AnMBR applied in the treatment of real municipal wastewater at an HRT of 6 hours.
  • [1]
    王波,刘春梅,赵雪莲,等.我国村镇城市污水处理技术发展方向展望[J].环境工程学报,2020,14(9):2318-2325.
    [2]
    KONG Z,LI L,FENG C P,et al.Comparative investigation on integrated vertical-flow biofilters applying sulfur-based and pyrite-based autotrophic denitrification for domestic wastewater treatment[J].Bioresource Technology,2016,211:125-135.
    [3]
    谢永攀,姚奎,张淑琼.污水处理厂能耗分析及节能措施探讨[J].广州化工,2018,46(18):101-103.
    [4]
    KONG Z,LI L,KURIHARA R,et al.Anaerobic treatment of N,N-dimethylformamide-containing wastewater by co-culturing two sources of inoculum[J].Water Research,2018,139:228-239.
    [5]
    LI L,QIN Y,KONG Z,et al.Characterization of microbial community and main functional groups of prokaryotes in thermophilic anaerobic co-digestion of food waste and paper waste[J].Science of the Total Environment,2019,652:709-717.
    [6]
    陈子爱,施国中,熊霞.厌氧消化技术在农村城市污水处理中的应用[J].农业资源与环境学报,2020,37(3):432-437.
    [7]
    陈恒宝,曹波,许立群,等.物料比对污泥与餐厨废弃物协同厌氧消化的影响[J].中国给水排水,2020,36(1):13-17.
    [8]
    黄安寿,何永全,曾祖刚.餐厨垃圾高温厌氧消化过程参数研究[J].中国沼气,2019,37(2):34-39.
    [9]
    周海东,刘积成,王莹莹,等.污泥与秸秆共基质中温两相厌氧消化特性[J].环境科学研究,2019,32(5):904-912.
    [10]
    XIAO K,LIANG S,WANG X M,et al.Current state and challenges of full-scale membrane bioreactor applications:a critical review[J].Bioresource Technology,2019,271:473-481.
    [11]
    ZHANG J,XIAO K,HUANG X.Full-scale MBR applications for leachate treatment in China:practical,technical,and economic features[J].Journal of Hazardous Materials,2020,389:122138.
    [12]
    LI B,QIU Y,LI J,et al.Removal of antibiotic resistance genes in four full-scale membrane bioreactors[J].Science of the Total Environment,2019,653:112-119.
    [13]
    LV X M,DONG Q,ZUO Z Q,et al.Microplastics in a municipal wastewater treatment plant:fate,dynamic distribution,removal efficiencies,and control strategies[J].Journal of Cleaner Production,2019,225:579-586.
    [14]
    KONG Z,LI L,XUE Y,et al.Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater:a review[J].Journal of Cleaner Production,2019,231:913-927.
    [15]
    LI L,KONG Z,XUE Y,et al.A comparative long-term operation using up-flow anaerobic sludge blanket (UASB) and anaerobic membrane bioreactor (AnMBR) for the upgrading of anaerobic treatment of N,N-dimethylformamide-containing wastewater[J].Science of the Total Environment,2020,699:134370.
    [16]
    NIE Y L,CHEN R,TIAN X K,et al.Impact of water characteristics on the bioenergy recovery from sewage treatment by anaerobic membrane bioreactor via a comprehensive study on the response of microbial community and methanogenic activity[J].Energy,2017,139:459-467.
    [17]
    CHEN R,NIE Y L,HU Y S,et al.Fouling behaviour of soluble microbial products and extracellular polymeric substances in a submerged anaerobic membrane bioreactor treating low-strength wastewater at room temperature[J].Journal of Membrane Science,2017,531:1-9.
    [18]
    LEI Z,YANG S M,LI Y Y,et al.Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature:a review of achievements,challenges,and perspectives[J].Bioresource Technology,2018,267:756-768.
    [19]
    SUN Y M,SHEN Y X,LIANG P,et al.Linkages between microbial functional potential and wastewater constituents in large-scale membrane bioreactors for municipal wastewater treatment[J].Water Research,2014,56:162-171.
    [20]
    LIU J J,YUAN Y,LI B K,et al.Enhanced nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor with sludge fermentation products as carbon source[J].Bioresource Technology,2017,244:1158-1165.
    [21]
    YUAN Y,LIU J J,MA B,et al.Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR)[J].Bioresource Technology,2016,222:326-334.
    [22]
    GOUVEIA J,PLAZA F,GARRALON G,et al.Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions[J].Bioresource Technology,2015,185:225-233.
    [23]
    EVANS P J,PARAMESWARAN P,LIM K,et al.A comparative pilot-scale evaluation of gas-sparged and granular activated carbon-fluidized anaerobic membrane bioreactors for domestic wastewater treatment[J].Bioresource Technology,2019,288:120949.
    [24]
    KONG Z,LI L,KURIHARA R,et al.Anaerobic treatment of N,N-dimethylformamide-containing high-strength wastewater by submerged anaerobic membrane bioreactor with a co-cultured inoculum[J].Science of the Total Environment,2019,663:696-708.
    [25]
    AHMED W,RODRÍGUEZ J.Modelling sulfate reduction in anaerobic digestion:complexity evaluation and parameter calibration[J].Water Research,2018,130:255-262.
    [26]
    SHIN C,MCCARTY P L,KIM J,et al.Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR)[J].Bioresource Technology,2014,159:95-103.
    [27]
    MCCARTY P L,BAE J,KIM J.Domestic wastewater treatment as a net energy producer-can this be achieved?[J].Environmental Science and Technology,2011,45:7100-7106.
    [28]
    KONG Z,LI L,LI Y Y.Long-term performance of UASB in treating N,N-dimethylformamide-containing wastewater with a rapid start-up by inoculating mixed sludge[J].Science of the Total Environment,2019,648:1141-1150.
    [29]
    KONG Z,WU J,RONG C,et al.Large pilot-scale submerged anaerobic membrane bioreactor for the treatment of municipal wastewater and biogas production at 25℃[J].Bioresource Technology,2021,319:124123.
    [30]
    YOUNG M N,KRAJMALNIK-BROWN R,LIU W,et al.The role of anaerobic sludge recycle in improving anaerobic digester performance[J].Bioresource Technology,2013,128:731-737.
    [31]
    KONG Z,WU J,RONG C,et al.Sludge yield and degradation of suspended solids by a large pilot-scale anaerobic membrane bioreactor for the treatment of real municipal wastewater at 25℃[J].Science of the Total Environment,2021,795:143526.
    [32]
    MIAO Y Y,PENG Y Z,ZHANG L,et al.Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode:effect of influent C/N ratios[J].Chemical Engineering Journal,2018,334:664-672.
  • Relative Articles

    [1]LENG Jiewen, SHI Ke, WANG Xuejing, KOU Wei, FU Xiaowei, SUN Zhaonan. ADSORPTION OF TETRACYCLINE ON BIOCHAR PREPARED FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 75-82. doi: 10.13205/j.hjgc.202405010
    [2]WANG Xingming, WANG Ying, FAN Tingyu, CHU Zhaoxia, DONG Zhongbing, DONG Peng. PATHWAYS OF HEAVY METALS ABSORPTION BY EARTHWORMS IN SLUDGE VERMI COMPOSTING ENHANCED BY RICE HUSK CHARCOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 147-154. doi: 10.13205/j.hjgc.202410018
    [3]LIU Wei, XU Zhiqiang, LI Hongxing, CAO Chenjie, DONG Wen, FENG Minquan, QI Mingyang, LI Jiangbo, KOU Xiaomei, SHAO Tian. IMMOBILIZATION EFFECT OF SLUDGE BIOCHAR ON HEAVY METALS IN CONTAMINATED DREDGED SEDIMENT IN RIVER CHANNELS IN MINING REGION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 32-39. doi: 10.13205/j.hjgc.202402004
    [4]LU Ailing, ZHU Dongyun, ZHANG Hong, CAO Han, ZHANG Jing. EXPERIMENTAL STUDY ON REMEDIATION OF HEAVY METAL CONTAMINATED SOIL BY EICP COMBINED WITH BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 176-180. doi: 10.13205/j.hjgc.202308022
    [5]JIANG Yuzhu, HUI Helong, LIU Hongyi, DING Guangchao, LU Wenyi, LI Songgeng. STUDY ON THE EFFECTIVENESS OF TEXTILE DYING SLUDGE BIOCHAR IN TREATING REFRACTORY ORGANIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 32-39. doi: 10.13205/j.hjgc.202210005
    [6]CAO Xiuqin, LIU Feng, CHAI Lianlian, ZHU Kaijin, TAN Junhua. RESEARCH PROGRESS ON PREPARATION OF SLUDGE BASED BIOCHAR AND ITS EFFECT ON SOIL ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 203-211. doi: 10.13205/j.hjgc.202203030
    [7]LI Wei, AN Xian-jin. DESORPTION BEHAVIOR OF PHENANTHRENE AND PYRENE IN ROCKY DESERTIFICATION SOIL IN GUIZHOU, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 178-185,214. doi: 10.13205/j.hjgc.202209024
    [8]WAN Jing-min, ZHANG Fa-wang, HAN Zhan-tao, SONG Pei-pei, BAI Yun. ADSORPTION OF HEAVY METAL IONS ON ALKALI-MELTIING AND HYDROTHERMAL MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 108-117. doi: 10.13205/j.hjgc.202209015
    [9]QI Xiaoxue, ZHANG Chen, YU Jianghua. PREPARATION OF PUMICE BASED ON CONSTRUCTION WASTE AND ITS ADSORPTION PERFORMANCE ON HEAVY METALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 171-177. doi: 10.13205/j.hjgc.202208024
    [10]WU Qin-yue, LIU He, ZHENG Wei, LIU Hong-bo, ZHENG Zhi-yong, ZHANG Yan, ZHANG Cui-cui. PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013
    [11]CHEN Lin, PING Wei, YAN Bin, WU Yan, FU Chuan, HUANG Lian-qi, LIU Lu, YIN Mao-yun. ADSORPTION CHARACTERISTICS OF Cr(Ⅵ) BY SLUDGE BIOCHAR UNDER DIFFERENT PYROLYSIS TEMPERATURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 119-124. doi: 10.13205/j.hjgc.202008020
    [12]XU Si-han, WANG Min-yan, ZHANG Jin, DIAO Han-jie, LI Yan-ming, SHAN Sheng-dao, CAO Yu-cheng. EFFECT OF PYROLYSIS TIME ON CHARACTERISTICS AND HEAVY METAL ECOLOGICAL RISKS IN BIOCHAR MADE FROM WASTEWATER SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 162-167. doi: 10.13205/j.hjgc.202003027
    [13]CHENG Shu-zhen, SUN Chang-shun, WANG Li-xiang, GUO Xin-chao, LI Yuan-han. ANALYSIS ON CONTENT CHARACTERISTICS OF NUTRIENTS AND HEAVY METALS IN URBAN SLUDGE OF SHAANXI PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 65-69. doi: 10.13205/j.hjgc.202005012
    [14]LI Jing, BAO Dong-jie, WANG Xiang-ning, LIU Zhan-meng. ADSORPTION PROPERTIES AND MECHANISM OF A MAGNETIC NANOCOMPOSITE ADSORBENT (PFM) FOR COPPER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 84-88. doi: 10.13205/j.hjgc.202005015
    [15]YAN Bing-gang, HU Jia-wei, JIANG Xiao-qian, YU Yang, GUAN Yun-tao. ADSORPTION PERFORMANCE AND MECHANISM OF PHOSPHATE AND PHYTIC ACID ON MAGNESIUM-LADEN BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 94-101. doi: 10.13205/j.hjgc.202006015
    [17]Zhang Jun, Xu Junyang, Wang Dunqiu, Yang Huiping, Wu Xiaohui. EFFECTS OF TYPES AND CONCENTRATIONS OF SULFUR SUBSTRATE ON BIOLEACHING HEAVY METALS FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 39-43. doi: 10.13205/j.hjgc.201504009
    [18]Chen Yasong, Zhang Chao, Chen Zhenguo, Dong Wenjie, Xu Bingxin. EARLY WARNING OF ACTIVATED SLUDGE INHIBITORY ACTION BY HEAVY METALS BASED ON OXYGEN UPTAKE RATE INDEX[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 27-31. doi: 10.13205/j.hjgc.201502006
    [19]Xu Yanzhe Fang Zhanqiang, . ADVANCES ON REMEDIATION OF HEAVY METAL IN THE SOIL BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 156-159. doi: 10.13205/j.hjgc.201502035
    [20]RESEARCH PROGRESS ON IMMOBILIZATION AND REMOVAL OF HEAVY METALS FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 82-86. doi: 10.13205/j.hjgc.201412014
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.0 %FULLTEXT: 9.0 %META: 85.5 %META: 85.5 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.8 %其他: 10.8 %China: 1.5 %China: 1.5 %Netherlands: 0.3 %Netherlands: 0.3 %South Africa: 2.0 %South Africa: 2.0 %[]: 1.7 %[]: 1.7 %上海: 1.7 %上海: 1.7 %东莞: 0.3 %东莞: 0.3 %东营: 3.8 %东营: 3.8 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %伊犁哈萨克自治州: 0.3 %伊犁哈萨克自治州: 0.3 %保定: 0.3 %保定: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 3.2 %北京: 3.2 %十堰: 0.3 %十堰: 0.3 %南京: 0.9 %南京: 0.9 %南充: 0.3 %南充: 0.3 %南通: 0.3 %南通: 0.3 %台州: 1.5 %台州: 1.5 %合肥: 1.2 %合肥: 1.2 %哈密: 0.3 %哈密: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %大连: 0.3 %大连: 0.3 %天津: 1.5 %天津: 1.5 %太原: 0.6 %太原: 0.6 %孟买: 0.3 %孟买: 0.3 %安庆: 0.6 %安庆: 0.6 %巴格达: 1.5 %巴格达: 1.5 %常德: 0.3 %常德: 0.3 %广州: 6.1 %广州: 6.1 %弗吉: 0.3 %弗吉: 0.3 %张家口: 0.9 %张家口: 0.9 %惠州: 0.3 %惠州: 0.3 %成都: 0.6 %成都: 0.6 %扬州: 0.3 %扬州: 0.3 %拉贾斯坦邦: 0.3 %拉贾斯坦邦: 0.3 %新余: 0.3 %新余: 0.3 %昆明: 0.3 %昆明: 0.3 %昌吉: 0.3 %昌吉: 0.3 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.6 %朝阳: 0.6 %杭州: 0.6 %杭州: 0.6 %武汉: 1.2 %武汉: 1.2 %毕节: 0.9 %毕节: 0.9 %沈阳: 0.3 %沈阳: 0.3 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.9 %济南: 0.9 %济源: 0.6 %济源: 0.6 %温州: 0.6 %温州: 0.6 %湖州: 1.2 %湖州: 1.2 %漯河: 0.6 %漯河: 0.6 %烟台: 0.3 %烟台: 0.3 %益阳: 0.6 %益阳: 0.6 %石家庄: 0.3 %石家庄: 0.3 %芒廷维尤: 20.1 %芒廷维尤: 20.1 %苏州: 0.3 %苏州: 0.3 %衡阳: 0.3 %衡阳: 0.3 %西双版纳傣族自治州: 0.9 %西双版纳傣族自治州: 0.9 %西宁: 13.1 %西宁: 13.1 %西安: 0.3 %西安: 0.3 %贵阳: 0.9 %贵阳: 0.9 %运城: 2.9 %运城: 2.9 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.5 %郑州: 1.5 %重庆: 1.5 %重庆: 1.5 %金华: 0.3 %金华: 0.3 %铁岭: 0.3 %铁岭: 0.3 %长沙: 0.3 %长沙: 0.3 %长治: 0.3 %长治: 0.3 %雅安: 0.6 %雅安: 0.6 %青岛: 0.9 %青岛: 0.9 %其他ChinaNetherlandsSouth Africa[]上海东莞东营临汾乌鲁木齐伊犁哈萨克自治州保定兰州北京十堰南京南充南通台州合肥哈密哈尔滨大连天津太原孟买安庆巴格达常德广州弗吉张家口惠州成都扬州拉贾斯坦邦新余昆明昌吉晋城朝阳杭州武汉毕节沈阳洛阳济南济源温州湖州漯河烟台益阳石家庄芒廷维尤苏州衡阳西双版纳傣族自治州西宁西安贵阳运城遵义邯郸郑州重庆金华铁岭长沙长治雅安青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (270) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return