Core Chinese Journal
Source Journal of CSCD(Core Version)
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 39 Issue 7
Jan.  2022
Turn off MathJax
Article Contents
KONG Zhe, WU Jiang, RONG Chao, WANG Tian-jie, LI Lu, HUANG Yong, LI Yu-you. OPERATION PERFORMANCE AND MASS BALANCE OF A LARGE PILOT-SCALE ANAEROBIC MEMBRANE BIOREACTOR(AnMBR) FOR MUNICIPAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 94-100. doi: 10.13205/j.hjgc.202107011
Citation: KONG Zhe, WU Jiang, RONG Chao, WANG Tian-jie, LI Lu, HUANG Yong, LI Yu-you. OPERATION PERFORMANCE AND MASS BALANCE OF A LARGE PILOT-SCALE ANAEROBIC MEMBRANE BIOREACTOR(AnMBR) FOR MUNICIPAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 94-100. doi: 10.13205/j.hjgc.202107011

OPERATION PERFORMANCE AND MASS BALANCE OF A LARGE PILOT-SCALE ANAEROBIC MEMBRANE BIOREACTOR(AnMBR) FOR MUNICIPAL WASTEWATER TREATMENT

doi: 10.13205/j.hjgc.202107011
  • Received Date: 2021-01-15
    Available Online: 2022-01-18
  • The operation performance and mass balance of a large pilot-scale anaerobic membrane bioreactor(AnMBR) in treating real municipal wastewater was investigated, by using a demonstration plant in Sendai, Japan, at a temperature of 25℃ under the control of an automatic system. This plant with 5.0 m3 effective volume was the largest one-stage submerged AnMBR that has ever applied to the treatment of municipal wastewater. During the long-term operation of 217 days, this AnMBR system realized a low hydraulic retention time(HRT) of 6 h, obtaining excellent effluent quality with the COD removal efficiency over 90% and BOD5 removal rate over 95%. Biogas was successfully recovered from municipal wastewater with a biogas production of 0.5 L/g removed COD and 0.09~0.10 L/L raw wastewater, and the methane content in the biogas was over 75%. The sludge yield of the AnMBR was approximately 0.19~0.26 g MLSS/g COD. The suspended solid(SS) contained in the municipal wastewater was completely removed by the AnMBR, while the SS conversion efficiency was 34%~43%. The COD and nitrogen mass balance were also identified based on the experimental results. Under the operation mode of 4 min for permeating and 1 min for relaxing with a biogas sparging flow rate of 0.9 m3/min, the hollow-fiber membrane module with a total area of 72 m2 was able to realize a max flux of 17.75 L/(m2·h), and the highest mean transmembrane pressure(TMP) was 23.5 kPa. An online backwash chemical cleaning system helped reduce the TMP timely. However, the TMP increased rapidly during the HRT of 6 h and a weekly online backwash was necessary. This is the first report of successful operation and detail performance of a large scale AnMBR applied in the treatment of real municipal wastewater at an HRT of 6 hours.
  • loading
  • [1]
    王波,刘春梅,赵雪莲,等.我国村镇城市污水处理技术发展方向展望[J].环境工程学报,2020,14(9):2318-2325.
    [2]
    KONG Z,LI L,FENG C P,et al.Comparative investigation on integrated vertical-flow biofilters applying sulfur-based and pyrite-based autotrophic denitrification for domestic wastewater treatment[J].Bioresource Technology,2016,211:125-135.
    [3]
    谢永攀,姚奎,张淑琼.污水处理厂能耗分析及节能措施探讨[J].广州化工,2018,46(18):101-103.
    [4]
    KONG Z,LI L,KURIHARA R,et al.Anaerobic treatment of N,N-dimethylformamide-containing wastewater by co-culturing two sources of inoculum[J].Water Research,2018,139:228-239.
    [5]
    LI L,QIN Y,KONG Z,et al.Characterization of microbial community and main functional groups of prokaryotes in thermophilic anaerobic co-digestion of food waste and paper waste[J].Science of the Total Environment,2019,652:709-717.
    [6]
    陈子爱,施国中,熊霞.厌氧消化技术在农村城市污水处理中的应用[J].农业资源与环境学报,2020,37(3):432-437.
    [7]
    陈恒宝,曹波,许立群,等.物料比对污泥与餐厨废弃物协同厌氧消化的影响[J].中国给水排水,2020,36(1):13-17.
    [8]
    黄安寿,何永全,曾祖刚.餐厨垃圾高温厌氧消化过程参数研究[J].中国沼气,2019,37(2):34-39.
    [9]
    周海东,刘积成,王莹莹,等.污泥与秸秆共基质中温两相厌氧消化特性[J].环境科学研究,2019,32(5):904-912.
    [10]
    XIAO K,LIANG S,WANG X M,et al.Current state and challenges of full-scale membrane bioreactor applications:a critical review[J].Bioresource Technology,2019,271:473-481.
    [11]
    ZHANG J,XIAO K,HUANG X.Full-scale MBR applications for leachate treatment in China:practical,technical,and economic features[J].Journal of Hazardous Materials,2020,389:122138.
    [12]
    LI B,QIU Y,LI J,et al.Removal of antibiotic resistance genes in four full-scale membrane bioreactors[J].Science of the Total Environment,2019,653:112-119.
    [13]
    LV X M,DONG Q,ZUO Z Q,et al.Microplastics in a municipal wastewater treatment plant:fate,dynamic distribution,removal efficiencies,and control strategies[J].Journal of Cleaner Production,2019,225:579-586.
    [14]
    KONG Z,LI L,XUE Y,et al.Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater:a review[J].Journal of Cleaner Production,2019,231:913-927.
    [15]
    LI L,KONG Z,XUE Y,et al.A comparative long-term operation using up-flow anaerobic sludge blanket (UASB) and anaerobic membrane bioreactor (AnMBR) for the upgrading of anaerobic treatment of N,N-dimethylformamide-containing wastewater[J].Science of the Total Environment,2020,699:134370.
    [16]
    NIE Y L,CHEN R,TIAN X K,et al.Impact of water characteristics on the bioenergy recovery from sewage treatment by anaerobic membrane bioreactor via a comprehensive study on the response of microbial community and methanogenic activity[J].Energy,2017,139:459-467.
    [17]
    CHEN R,NIE Y L,HU Y S,et al.Fouling behaviour of soluble microbial products and extracellular polymeric substances in a submerged anaerobic membrane bioreactor treating low-strength wastewater at room temperature[J].Journal of Membrane Science,2017,531:1-9.
    [18]
    LEI Z,YANG S M,LI Y Y,et al.Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature:a review of achievements,challenges,and perspectives[J].Bioresource Technology,2018,267:756-768.
    [19]
    SUN Y M,SHEN Y X,LIANG P,et al.Linkages between microbial functional potential and wastewater constituents in large-scale membrane bioreactors for municipal wastewater treatment[J].Water Research,2014,56:162-171.
    [20]
    LIU J J,YUAN Y,LI B K,et al.Enhanced nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor with sludge fermentation products as carbon source[J].Bioresource Technology,2017,244:1158-1165.
    [21]
    YUAN Y,LIU J J,MA B,et al.Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR)[J].Bioresource Technology,2016,222:326-334.
    [22]
    GOUVEIA J,PLAZA F,GARRALON G,et al.Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions[J].Bioresource Technology,2015,185:225-233.
    [23]
    EVANS P J,PARAMESWARAN P,LIM K,et al.A comparative pilot-scale evaluation of gas-sparged and granular activated carbon-fluidized anaerobic membrane bioreactors for domestic wastewater treatment[J].Bioresource Technology,2019,288:120949.
    [24]
    KONG Z,LI L,KURIHARA R,et al.Anaerobic treatment of N,N-dimethylformamide-containing high-strength wastewater by submerged anaerobic membrane bioreactor with a co-cultured inoculum[J].Science of the Total Environment,2019,663:696-708.
    [25]
    AHMED W,RODRÍGUEZ J.Modelling sulfate reduction in anaerobic digestion:complexity evaluation and parameter calibration[J].Water Research,2018,130:255-262.
    [26]
    SHIN C,MCCARTY P L,KIM J,et al.Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR)[J].Bioresource Technology,2014,159:95-103.
    [27]
    MCCARTY P L,BAE J,KIM J.Domestic wastewater treatment as a net energy producer-can this be achieved?[J].Environmental Science and Technology,2011,45:7100-7106.
    [28]
    KONG Z,LI L,LI Y Y.Long-term performance of UASB in treating N,N-dimethylformamide-containing wastewater with a rapid start-up by inoculating mixed sludge[J].Science of the Total Environment,2019,648:1141-1150.
    [29]
    KONG Z,WU J,RONG C,et al.Large pilot-scale submerged anaerobic membrane bioreactor for the treatment of municipal wastewater and biogas production at 25℃[J].Bioresource Technology,2021,319:124123.
    [30]
    YOUNG M N,KRAJMALNIK-BROWN R,LIU W,et al.The role of anaerobic sludge recycle in improving anaerobic digester performance[J].Bioresource Technology,2013,128:731-737.
    [31]
    KONG Z,WU J,RONG C,et al.Sludge yield and degradation of suspended solids by a large pilot-scale anaerobic membrane bioreactor for the treatment of real municipal wastewater at 25℃[J].Science of the Total Environment,2021,795:143526.
    [32]
    MIAO Y Y,PENG Y Z,ZHANG L,et al.Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode:effect of influent C/N ratios[J].Chemical Engineering Journal,2018,334:664-672.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (180) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return