Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHANG Qiuying, LI Liang, BIAN Di. RESEARCH PROGRESS ON EFFECT OF ORGANIC MATTERS ON ANAMMOX REACTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 190-195. doi: 10.13205/j.hjgc.202201028
Citation: WANG Rui, YOU Hong, SHANG Wen-tao, SUN Fei-yun, YUE San-feng, SUN Jin-xu. CFD MODEL COUPLED WITH PARTICLES FORCE ANALYSIS AND ITS APPLICATION IN ULTRAFILTRATION MEMBRANE FOULING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 116-121,150. doi: 10.13205/j.hjgc.202107014

CFD MODEL COUPLED WITH PARTICLES FORCE ANALYSIS AND ITS APPLICATION IN ULTRAFILTRATION MEMBRANE FOULING

doi: 10.13205/j.hjgc.202107014
  • Received Date: 2021-01-25
    Available Online: 2022-01-18
  • Membrane fouling can be defined as a particle deposition process on the surface of membrane. In order to understand the particle migration and deposition process in the filter channel, a computational fluid dynamics(CFD) model coupled with particle force analysis was studied. By editing the user-defined function(UDF) of the force of the particles and combining with the discrete phase model(DPM) in CFD, the particle behaviors were simulated during ultrafiltration. The CFD simulation results were further verified by batch-scale experiments and the accuracy of CFD simulation of particle deposition was evidenced by in-situ Micro-PIV visualization.Resultsshowed that the particle deposition probability was positively related to the transmembrane pressure difference, and inversely related to the cross-flow velocity. The velocity field in the membrane cavity was recorded by the trajectory of the tracer particles. This CFD model visually and intuitively revealed the flow field of the membrane process and the movement of particles, and provided a scientific basis for understanding membrane fouling and optimizing membrane modules.
  • [1]
    MENG F G,ZHANG S Q,OH Y,et al.Fouling in membrane bioreactors:an updated review[J].Water Research,2017,114:151-180.
    [2]
    DU X,QU F S,LIANG H,et al.Cake properties in ultrafiltration of TiO2 fine particles combined with HA:in situ measurement of cake thickness by fluid dynamic gauging and CFD calculation of imposed shear stress for cake controlling[J].Environmental Science & Pollution Research International,2016,23(9):8806-8818.
    [3]
    FRÉDÉRIC L,PHILIPPE L C,SERGE S.TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids.pH and concentration effects on nanoparticle stability[J].Water Research,2013,47(16):6052-6063.
    [4]
    LIN T,LU Z J,CHEN W.Interaction mechanisms of humic acid combined with calcium ions on membrane fouling at different conditions in an ultrafiltration system[J].Desalination,2015,357(9679):26-35.
    [5]
    MENG X R,TANG W T,WANG L,et al.Mechanism analysis of membrane fouling behavior by humic acid using atomic force microscopy:effect of solution pH and hydrophilicity of PVDF ultrafiltration membrane interface[J].Journal of Membrane Science,2015,487:180-188.
    [6]
    唐娜,刘天宇,华欣欣,等.真空膜蒸馏过程CFD模拟及膜组件设计[J].膜科学与技术,2020,40,201(2):101

    -109.
    [7]
    瞿广飞,安之,宁平,等.数值模拟在污水生物处理领域应用进展[J].环境工程,2020,38(3):99-104

    ,179.
    [8]
    TSUJI Y,KAWAGUCHI T,TANAKA T.Discrete particle simulation of two-dimensional fluidized bed[J].Powder Technology,1998,98(1):79-87.
    [9]
    KAFUI K D,THORNTON C,ADAMS M J.Discrete particle-continuum fluid modelling of gas-solid fluidised beds[J].Chemical Engineering Science,2002,57(13):2395-2410.
    [10]
    荣双,王萍.风向对街谷内颗粒物扩散的DPM数值模拟研究[J].环境科学与技术,2016,39(2):38-42.
    [11]
    陈晓乐,佟振博,钟文琪,等.下呼吸道内可吸入颗粒物沉积的CFD-DPM数值模拟[J].中国工程热物理学会论文,2015.
    [12]
    陈磊,李长俊,季楚凌.水平弯管内硫沉积数值模拟研究[J].中国安全生产科学技术,2015,11(2):28-35.
    [13]
    CHEN Q,AHMADI G.Deposition of particles in a turbulent pipe flow[J].Journal of Aerosol Science,1997,28(5):789-796.
    [14]
    LI A,AHMADI G.Deposition of aerosols on surfaces in a turbulent channel flow[J].Int J Eng Sci,1993,31(3):435-451.
    [15]
    AMYLI,GOODARZ AHMADI.Computer simulation of deposition of aerosols in a turbulent channel flow with rough walls[J].Aerosol Science & Technology,1993,18(1):11-24.
    [16]
    LI A,AHMADI G,BAYER R G,et al.Aerosol particle deposition in an obstructed turbulent duct flow[J].Journal of Aerosol Science,1994,25(1):91-112.
    [17]
    孟晓刚,倪晋仁.固液两相流中颗粒受力及其对垂向分选的影响[J].水利学报,2002,33(9):6-13.
    [18]
    朱亮,汪跃,陈琳,等.基于CFD仿真模拟及PIV粒子示踪相结合法超滤膜组件优化[J].河海大学学报(自然科学版),2019,47(5):402-410.
    [19]
    谢重,齐欢,杨杰.液动压悬浮抛光固液两相流CFD数值模拟及PIV验证[J].机电工程,2020,37(4):389-393.
    [20]
    REY C,HENGL N,BAUP S,et al.Velocity,stress and concentration fields revealed by micro-PIV and SAXS within concentration polarization layers during cross-flow ultrafiltration of colloidal Laponite clay suspensions[J].Journal of Membrane Science,2019,578:69-84.
    [21]
    YU D W,LIU M M,LIU J B,et al.Effects of mixed-liquor rheology on vibration of hollow-fiber membrane via particle image velocimetry and computational fluid dynamics[J].Separation & Purification Technology,2020,239:116590.
    [22]
    WU Z W,WU Z C.A Review of membrane fouling in MBRs:characteristics and role of sludge cake formed on membrane surfaces[J].Separation Science & Technology,2009,44(15):3571-3596.
    [23]
    CHOO H K,LEE,et al.Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor[J].Water Research,1998,32(11):3387-3397.
    [24]
    ALTMANN J,RIPPERGER S.Particle deposition and layer formation at the crossflow microfiltration[J].Journal of Membrane Science,1997,124(1):119-128.
    [25]
    BELFORT G,DAVIS R H,ZYDNEY A L.The behavior of suspensions and macromolecular solutions in crossflow microfiltration[J].Journal of Membrane Science,1994,96(1/2):1-58.
    [26]
    李富根.粘性泥沙悬浮体系絮凝特性的初步研究[D].北京:清华大学,2005.
    [27]
    周筱,董杰,孙榕,等.紫外分光光度法测定玻璃样品[J].分析化学进展,2017,7(3):171-184.
    [28]
    ZOUBEIK M,ISMAIL M,SALAMA A,et al.New developments in membrane technologies used in the treatment of produced water:a review[J].Arabian Journal for Science & Engineering,2017(2):1-26.
    [29]
    BAKER J S,DUDLEY L Y.Biofouling in membrane systems:a review[J].Desalination,1998,118(1):81-89.
  • Relative Articles

    [1]ZHAO Xi, WEI Si. DEVELOPMENT OF AN EVALUATION SYSTEM FOR RANKING QUANTITATIVE DETECTION LIST FROM NONTARGET SCREENING OF EMERGING POLLUTANTS IN ENVIRONMENTAL SAMPLES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 81-87. doi: 10.13205/j.hjgc.202407008
    [2]DONG Yihua, ZHANG Xueying, ZHANG Xinyue, LI Liang. EVALUATION OF FARMLAND NON-POINT SOURCE POLLUTION CONTROL TECHNOLOGY IN LIAOHE RIVER BASIN BASED ON AHP-FCE METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 150-157. doi: 10.13205/j.hjgc.202312018
    [3]YIN Hao, ZHAN Ya, ZHANG Liu, LIU Gui-jian. SUITABILITY EVALUATION OF RIPARIAN ZONE OF CLEAR WATER GALLERY BASED ON AHP[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 193-196,250. doi: 10.13205/j.hjgc.202205028
    [4]CHI Pan-pan, WEI Wei, YE Song. ESTABLISHMENT AND APPLICATION OF WATER QUALITY SAFETY EARLY WARNING MODEL BASED ON PETRI THEORY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 79-83,158. doi: 10.13205/j.hjgc.202112012
    [5]CAO Wen-ping, LIU Xi-kun, ZHAO Tian-qing, TIAN Li, LIU Yong. EVALUATION OF WATER ENVIRONMENTAL HEALTH OF PAN'AN LAKE WETLAND BASED ON PRESSURE-STATE-RESPONSE (PSR) MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 231-237,245. doi: 10.13205/j.hjgc.202105032
    [6]ZHAO Xi, WU Shan-shan, LU Ke-ding. DEVELOPMENT OF AN EVALUATION SYSTEM FOR ASSESSING CONSTRUCTION LEVEL IN OPERATION OF MUNICIPAL SOLID WASTE COMPREHENSIVE TREATMENT PARK FOR ZERO-WASTE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 136-140,15. doi: 10.13205/j.hjgc.202102022
    [7]LI Yong, CONG Yi, JIA Jia. FUZZY COMPREHENSIVE EVALUATION OF URBAN AIR QUALITY IN FENWEI PLAIN BASED ON ENTROPY WEIGHT METHOD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 236-243,206. doi: 10.13205/j.hjgc.202008039
    [8]LONG Jia, WANG Si-si, FENG Meng-ke. APPLICATION STATUS AND EVALUATION OPTIMIZATION OF THE PLANTS IN BEIJING LID FACILITIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 89-95. doi: 10.13205/j.hjgc.202004016
    [9]LIU Tong-li, ZHAO Li-xin, MENG Hai-bo, YAO Zong-lu, ZHANG Xi-rui, HUO Li-li. RESEARCH AND OPTIMIZATION OF EVALUATION METHODS FOR STRAW ENERGY UTILIZATION TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 195-200. doi: 10.13205/j.hjgc.202008032
    [10]LI Jing, TANG Min, LIANG Yi-xin. EVALUATION OF WATER QUALITY IMPROVEMENT EFFECT IN HAIHE RIVER BASIN IN HENAN PROVINCE FROM 2015 TO 2018[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 60-64,190. doi: 10.13205/j.hjgc.202005011
    [12]Wang Jiahui, Zhang Xuefeng, Deng Panbo. APPLICATION OF VICIA-MICRONUCLEUS TEST TO MONITOR THE UNDERGROUND WATER POLLUTION OF TAILINGS SURROUNDING[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 117-120. doi: 10.13205/j.hjgc.201510026
    [13]Qin Lanlan Wang Youle, . CASE STUDY ON THE INDICATOR SYSTEM OF PLANNED ENVIRONMENTAL IMPACT ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 143-146. doi: 10.13205/j.hjgc.201502032
    [14]Huo Pan, Cao Liwen, Tian Yanfeng. APPLICATION AND COMPARISON OF AHP AND FUZZY EVALUATION METHOD IN LANDFILL SITING[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 131-135. doi: 10.13205/j.hjgc.201503026
  • Cited by

    Periodical cited type(1)

    1. 梁玉伟,张世文,胡睿鑫,郭丹丹,陈方可,胡含秀. 不同氮源对芦苇好氧堆肥中温室气体排放及碳氮损失的影响. 中国土壤与肥料. 2025(01): 107-117 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.1 %FULLTEXT: 19.1 %META: 80.9 %META: 80.9 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.2 %其他: 20.2 %China: 4.3 %China: 4.3 %北京: 7.4 %北京: 7.4 %台州: 3.2 %台州: 3.2 %张家口: 3.2 %张家口: 3.2 %杭州: 1.1 %杭州: 1.1 %漯河: 5.3 %漯河: 5.3 %芒廷维尤: 21.3 %芒廷维尤: 21.3 %苏州: 1.1 %苏州: 1.1 %西宁: 31.9 %西宁: 31.9 %重庆: 1.1 %重庆: 1.1 %其他China北京台州张家口杭州漯河芒廷维尤苏州西宁重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (277) PDF downloads(5) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return