Core Chinese Journal
Source Journal of CSCD(Core Version)
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 39 Issue 7
Jan.  2022
Turn off MathJax
Article Contents
BAI Yu-hua, SUN Yu, WU Ming-huo, ZHOU Yun, TANG Huai-bin, ZENG Yan, LIU Bai-cang. WATER PURIFICATION EFFICIENCY OF SHALE GAS FLOWBACK WATER BY COAGULATION-OZONE/ADSORPTION-UF-RO COMBINED PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 122-127. doi: 10.13205/j.hjgc.202107015
Citation: BAI Yu-hua, SUN Yu, WU Ming-huo, ZHOU Yun, TANG Huai-bin, ZENG Yan, LIU Bai-cang. WATER PURIFICATION EFFICIENCY OF SHALE GAS FLOWBACK WATER BY COAGULATION-OZONE/ADSORPTION-UF-RO COMBINED PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 122-127. doi: 10.13205/j.hjgc.202107015

WATER PURIFICATION EFFICIENCY OF SHALE GAS FLOWBACK WATER BY COAGULATION-OZONE/ADSORPTION-UF-RO COMBINED PROCESS

doi: 10.13205/j.hjgc.202107015
  • Received Date: 2020-12-03
    Available Online: 2022-01-18
  • Some low molecular weight organics, such as dimethylbenzylamine(DMBA), indoline and 6-methylquinoline are difficult to remove from shale gas flowback water(SGFW). The combined process of coagulation-ozonation/adsorption-UF-RO was used to treat the SGFW to explore organic and inorganic components' removal efficiency. The results showed that:the removal rates of ions by coagulation-ozone-UF-RO combination process were 96.7~99.86%, the removal rates of DOC and UV254 were 98.7% and 99.13%, and the removal rates of DMBA, indoline and 6-methylquinoline were 82.02%, 98.02% and 97.67%; the removal rates of ions by coagulation-adsorption-UF-RO combination process were 95.99~99.86%, and the removal rates of DOC and UV254 were 95.99%~99.86%, the removal rates of DMBA, indoline and 6-methylquinoline were 70.19%, 94.70% and 87.93%. Coagulation-ozonation/adsorption-UF-RO process could effectively remove ions, DOC and UV254 in the effluent, and has significant removal effect on DMBA, indoline and 6-methylquinoline. The combined process could effectively ensure the external reuse of SGFW.
  • loading
  • [1]
    KARGBO D M,WILHELM R G,CAMPBELL D J.Natural gas plays in the Marcellus Shale:challenges and potential opportunities[J].Environmental Science & Technology,2010,44:5679-5684.
    [2]
    QIN Y,EDWARDS R,TONG F,et al.Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?[J].Environmental Science & Technology,2017,51(5):2554-2562.
    [3]
    SHAFFER D L,CHAVEZ L H A,BEN-SASSON M,et al.Desalination and reuse of high-salinity shale gas produced water:drivers,technologies,and future directions[J].Environmental Science & Technology,2013,47(17):9569-9583.
    [4]
    JACKSON R B,VENGOSH A,CAREY J W,et al.The environmental costs and benefits of fracking[J].Annual Review of Environment and Resources,2014,39:327-362.
    [5]
    OLSSON O,WEICHGREBE D,ROSENWINKEL K H.Hydraulic fracturing wastewater in Germany:composition,treatment,concerns[J].Environmental Earth Sciences,2013,70(8):3895-3906.
    [6]
    ESTRADA J M,BHAMIDIMARRI R.A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing[J].Fuel,2016,182:292-303.
    [7]
    BARBOT E,VIDIC N S,GREGORY K B,et al.Spatial and temporal correlation of water quality parameters of produced waters from Devonian-Age shale following hydraulic fracturing[J].Environmental Science & Technology,2013,47(6):2562-2569.
    [8]
    ROSENBLUM J,THURMAN E M,FERRER I,et al.Organic chemical characterization and mass balance of a hydraulically fractured well:from fracturing fluid to produced water over 405 days[J].Environmental Science & Technology,2017,51(23):14006-14015.
    [9]
    KONG F X,CHEN J F,WANG H M,et al.Application of coagulation-UF hybrid process for shale gas fracturing flowback water recycling:performance and fouling analysis[J].Journal of Membrane Science,2017,524:460-469.
    [10]
    BUTKOVSKYI A,BRUNING H,KOOLS S A E,et al.Organic pollutants in shale gas flowback and produced waters:identification,potential ecological impact,and implications for treatment strategies[J].Environmental Science & Technology,2017,51(9):4740-4754.
    [11]
    HE C,WANG X H,LIU W S,et al.Microfiltration in recycling of Marcellus Shale flowback water:solids removal and potential fouling of polymeric microfiltration membranes[J].Journal of Membrane Science,2014,462:88-95.
    [12]
    GREGORY K B,VIDIC R D,DZOMBAK D A.Water management challenges associated with the production of shale gas by hydraulic fracturing[J].Elements,2009,7(3):181-186.
    [13]
    PIEMONTEA V,PRISCIANDAROB M,MASCISA L,et al.Reverse osmosis membranes for treatment of produced water:a process analysis[J].Desalination and Water Treatment,2015,55(3):565-574.
    [14]
    XIONG B,ZYDNEY A L,KUMAR M.Fouling of microfiltration membranes by flowback and produced waters from the Marcellus shale gas play[J].Water Research,2016,99:162-170.
    [15]
    BUTKOVSKYI A,FABER A H,WANG Y,et al.Removal of organic compounds from shale gas flowback water[J].Water Research,2018,138:47-55.
    [16]
    LESTER Y,FERRER I,THURMAN E M,et al.Characterization of hydraulic fracturing flowback water in Colorado:implications for water treatment[J].Science of The Total Environment,2015,512/513:637-644.
    [17]
    CHANG H Q,LIU B C,YANG B X,et al.An integrated coagulation-ultrafiltration-nanofiltration process for internal reuse of shale gas flowback and produced water[J].Separation and Purification Technology,2019,211:310-321.
    [18]
    HAO H W,HUANG X,GAO C J,et al.Application of an integrated system of coagulation and electrodialysis for treatment of wastewater produced by fracturing[J].Desalination and Water Treatment,2014,55(8):2034-2043.
    [19]
    JIANG Q Y,RENTSCHLER J,PERRONE R,et al.Application of ceramic membrane and ion-exchange for the treatment of the flowback water from Marcellus shale gas production[J].Journal of Membrane Science,2013,431:55-61.
    [20]
    GUO C,CHANG H Q,LIU B C,et al.A combined ultrafiltration-reverse osmosis process for external reuse of Weiyuan shale gas flowback and produced water[J].Environmental Science:Water Research & Technology,2018,4(7):942-955.
    [21]
    SHANG W,TIRAFERRI A,HE Q,et al.Reuse of shale gas flowback and produced water:effects of coagulation and adsorption on ultrafiltration,reverse osmosis combined process[J].Science of the Total Environment,2019,689:47-56.
    [22]
    TANG P,LIU B C,ZHANG Y L,et al.Sustainable reuse of shale gas wastewater by pre-ozonation with ultrafiltration-reverse osmosis[J].Chemical Engineering Journal,2020,392:123743.
    [23]
    CHANG H Q,QU F S,LIU B C,et al.Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid:effects of membrane properties and backwash water composition[J].Journal of Membrane Science,2015,493:723-733.
    [24]
    WANG J L,BAI Z Y.Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater[J].Chemical Engineering Journal,2017,312:79-98.
    [25]
    BELLONA C,DREWES J E,XU P,et al.Factors affecting the rejection of organic solutes during NF/RO treatment:a literature review[J].Water Research,2004,38(12):2795-2809.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (69) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return