Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Mu, WANG Shao-hua, WANG Tong-chun, DUAN Meng-yuan, SU Ying-qiang, HAN Hui-ming, LIN Xiao-feng, LI Ze-hua. A LARGE-SCALE ENGINEERING APPLICATION OF MICROFILTRATION-NANOFILTRATION COMBINED TECHNOLOGY IN DRINKING WATER ADVANCED TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 151-155. doi: 10.13205/j.hjgc.202107020
Citation: LIU Mu, WANG Shao-hua, WANG Tong-chun, DUAN Meng-yuan, SU Ying-qiang, HAN Hui-ming, LIN Xiao-feng, LI Ze-hua. A LARGE-SCALE ENGINEERING APPLICATION OF MICROFILTRATION-NANOFILTRATION COMBINED TECHNOLOGY IN DRINKING WATER ADVANCED TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 151-155. doi: 10.13205/j.hjgc.202107020

A LARGE-SCALE ENGINEERING APPLICATION OF MICROFILTRATION-NANOFILTRATION COMBINED TECHNOLOGY IN DRINKING WATER ADVANCED TREATMENT

doi: 10.13205/j.hjgc.202107020
  • Received Date: 2021-01-08
    Available Online: 2022-01-18
  • The water supply scale of the Zhangjiagang Third Water Plant was 200000 m3/d, and its drinking water treatment process is sequentially combined by coagulation, sedimentation, filtration and chlorination disinfection. Based on the remarkable interception ability of nanofiltration membrane for monomolecular organic matters, micromolecular organic matters and saline ions including calcium ion, magnesium ion, sulfate ion, etc, a new water purification process combined by conventional technology, pressed-pot microfiltration and nanofiltrition was creatively applied in the large-scale engineering project of drinking water advanced treatment for the Zhangjiagang Third Water Plant, for the first time in China. The designed water production capacity of this project was 100000 t/d, and the project was aimed at upgrading the existing drinking water treatment technology. After the reformation, the nanofiltration system was predicted to perform over 90% removal rate for COD and TOC, 70%~80% removal rate for disinfection by-products, over 70% removal rate for pigments, 50%~70% removal rate for odorous substances, and 30%~40% rejection rate for salt. The recovery rate of the nanofiltration system was able to reach 90%, while the predicted energy consumption of pressed-pot microfiltration system and nanofiltration system was respectively 0.003, 0.197 kW·h/t, respectively. After accomplishing the project, Zhangjiagang Third Water Treatment Plant will be capable of supplying drinking water with higher quality, and possess higher resistance to water contamination emergencies.
  • [1]
    李新冬,代武川,袁佳彬,等.纳滤膜分离技术处理饮用水研究进展[J].应用化工,2018,47(8):1767-1771.
    [2]
    许嘉炯,马军,王如华,等.净水厂改造中超滤工艺优化与工程应用[J].给水排水,2015,41(7):13-18.
    [3]
    COSTA A R,PINHO M N D.Performance and cost estimation of nanofiltration for surface water treatment in drinking water production[J].Desalination,2006,196(1/2/3):55-65.
    [4]
    徐兵,杨程.纳滤膜处理微污染原水的中试研究[J].给水排水,2016,42(11):11-15.
    [5]
    WANG Y L,JU L,XU F,et al.Effect of a nanofiltration combined process on the treatment of high-hardness and micropolluted water[J].Environmental Research,2020,182(Mar.):109063.1-109063.9.
    [6]
    刘丹阳,赵尔卓,仲丽娟,等.低压纳滤膜用于微污染地表水深度处理的中试研究[J].给水排水,2019,45(4):15-23.
    [7]
    李昆,王健行,魏源送.纳滤在水处理与回用中的应用现状与展望[J].环境科学学报,2016,36(8):2714-2729.
    [8]
    REISS C R,TAYLOR J S,ROBERT C.Surface water treatment using nanofiltration:pilot testing results and design considerations[J].1999,125(1/2/3):97-112.
    [9]
    ZHANG X,LIU C,YANG J,et al.Nanofiltration membranes with hydrophobic microfiltration substrates for robust structure stability and high water permeation flux[J].Journal of Membrane Science,2020,593:117444.
    [10]
    SHAHRIARI H R,HOSSEINI S S.Experimental and statistical investigation on fabrication and performance evaluation of structurally tailored PAN nanofiltration membranes for produced water treatment[J].Chemical Engineering and Processing-Process Intensification,2020,147:107766.
    [11]
    王蓉.纳滤在城市污水处理中的应用[J].给水排水,2002,28(12):6-9.
    [12]
    罗敏,王占生.饮用水中纳滤技术的应用与发展[J].给水排水,2001,27(11):7-9.
    [13]
    于水利.基于纳滤膜分离的健康饮用水处理工艺[J].给水排水,2019,45(4):12-14

    ,23.
    [14]
    BI F,ZHAO H Y,ZHAO Z J,et al.Optimal design of nanofiltration system for surface water treatment[J].Chinese Journal of Chemical Engineering,2016,24(12):1674-1679.
    [15]
    吕建国,王文正.纳滤淡化高氟苦咸水示范工程[J].给水排水,2009,35(7):25-27.
    [16]
    ORECKI A,TOMASZEWSKA M,KARAKULSKI K,et al.Surface water treatment by the nanofiltration method[J].Desalination,2004,162:47-54.
  • Relative Articles

    [1]LIU Wenkai, WANG Kunpeng, WANG Xiaomao, HUANG Xia. HIGHLY SELECTIVE NANOFILTRATION SEPARATION TECHNOLOGY FACILITATES RESOURCE EXTRACTION AND RECOVERY FROM HIGH SALINITY ENVIRONMENTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 29-41. doi: 10.13205/j.hjgc.202409003
    [2]KONG Wanting, LI Xuesong, WANG Zhiwei. RECENT ADVANCES IN ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY TECHNOLOGY FOR CHARACTERIZATION OF FOULING AND MASS TRANSFER PROCESSES ON NANOFILTRATION AND REVERSE OSMOSIS MEMBRANES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 51-62. doi: 10.13205/j.hjgc.202409005
    [3]YANG Yiqing, ZHANG Yuxiang, ZHANG Yufei, LI Yaohuang, WU Mingyu, ZHANG Nan, CHEN Xiaoqiang. GAS PRODUCTION AND LEACHATE PROPERTIES OF MUNICIPAL SOLID WASTE WITH CONTINUOUS INJECTION OF CONCENTRATED NF LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 148-154. doi: 10.13205/j.hjgc.202303020
    [4]ZENG Guangshu, ZHOU Zhenchao, LIN Yanhan, GE Ziye, LIN Zejun, SHUAI Xinyi, ZHOU Jinyu, CHEN Hong. DISTRIBUTION OF ANTIBIOTIC RESISTANCE GENES AND EXPOSURE RISK IN DRINKING WATER: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 114-123. doi: 10.13205/j.hjgc.202309014
    [5]FENG Guizhen, HUANG Lin, FAN Shixiu. EFFECT OF ORGANIC MATTER CHARACTERISTICS IN RAW WATER ON NANOFILTRATION MEMBRANE FOULING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 1-6,42. doi: 10.13205/j.hjgc.202302001
    [6]ZHOU Kang, WANG Zhen-kai, ZHANG Gui-cheng, CHEN Xin-an, CHENG Yan, LUO Gang, SUN Sheng-peng. BIODEGRADATION AND TERTIARY TREATMENT EFFICIENCIES OF TYPICAL PHARMACEUTICAL MICROPOLLUTANTS BY MBBR AND UVC-BASED ADVANCED OXIDATION PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 37-43. doi: 10.13205/j.hjgc.202205006
    [7]CHANG Jia-yu, YU Shui-li, LIU Hua-fa, GAO Le, LIU Gui-cai. EVOLUTION IN MEMBRANE PERFORMANCE OF GROUNDWATER SOURCED WATERWORKS DURING LONG-TERM OPERATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 73-79. doi: 10.13205/j.hjgc.202107008
    [8]YANG Zhe, DAI Ruo-bin, WEN Yue, WANG Li, WANG Zhi-wei, TANG Chu-yang. RECENT PROGRESS OF NANOFILTRATION MEMBRANE IN WATER TREATMENT AND WATER REUSE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 1-12. doi: 10.13205/j.hjgc.202107001
    [9]XU Lan, ZHOU Zhen-chao, ZHU Lin, LIU Yang, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. REMOVAL EFFICIENCY OF ANTIBIOTIC RESISTOME IN ACTIVATED CARBON DRINKING WATER PURIFIERS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 27-33. doi: 10.13205/j.hjgc.202106005
    [10]SAI Shi-jie, LI Mai-jun, DANG Ping, LIU Hui, ZHANG Na, HUANG Xia. APPLICATION OF HIGH SEPARATION NANOFILTRATION PROCESS IN ZERO DISCHARGE OF HIGH SALT WASTEWATER FROM COAL CHEMICAL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 173-178. doi: 10.13205/j.hjgc.202107024
    [11]YANG Shu-jun, ZHANG Chen, HE Jun, XIONG Jian-ying, LI Xue-ting, HUANG Xiao-wen. ENGINEERING APPLICATION OF NANOFILTRATION & THREE-LEVELS REDUCTION OF NANOFILTRATION CONCENTRATE TECHNOLOGY FOR ADVANCED TREATMENT OF LANDFILL LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 81-87,114. doi: 10.13205/j.hjgc.202006013
    [12]YANG Pei-lin, WANG Ji, WANG Zhi-kang, ZHANG Guang-long, QIN Fan-xin. PHTHALATE ESTERS POLLUTION CHARACTERISTICS AND HEALTH RISK OF DRINKING WATER SOURCES IN GUIYANG[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 172-177,27. doi: 10.13205/j.hjgc.202001028
    [13]FU Rao, ZHANG Wen-long, FENG Jiang-tao, YAN Wei. SYNTHESIZATION OF ANATASE TiO2 SYNTHESIZED AT LOW TEMPERATURE, AND ITS ADSORPTION PERFORMANCE ON FLUORIDE ION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 70-76. doi: 10.13205/j.hjgc.202002009
  • Cited by

    Periodical cited type(10)

    1. 王虹. 纳滤技术在饮用水水质提标工程中的应用与实践. 价值工程. 2024(04): 97-99 .
    2. 林晓峰,刘牡,朱希坤,黎泽华,张磊杰,苏英强. 全城同质高品质直饮水解决方案-饮用水发展未来. 城镇供水. 2023(01): 5-10+82 .
    3. 丁科仁,赵丽红,郭佳艺,唐传禹,杨纯. 基于界面聚合技术的复合纳滤膜改性研究进展. 水处理技术. 2023(06): 27-32+38 .
    4. 祝栋林,李国光,罗春燕,闫旭,胡力能. 双膜法对水中微塑料-有机物复合污染物的去除特性研究. 环境监控与预警. 2023(03): 14-20 .
    5. 覃建军,黄福瑶,胡振. 人工快渗工艺在污水处理厂出水深度处理的应用. 绿色科技. 2023(10): 161-165 .
    6. 彭晓旭,陈寿彬. 饮用水深度处理工程中的膜工艺设计要点. 中国给水排水. 2023(14): 96-101 .
    7. 赵汗青,刘永泽,朱琳,张立秋,封莉. 多级滤池工艺去除地下水硝酸盐的效能与安全性. 净水技术. 2022(08): 31-40 .
    8. 银岚平,何玲,李敏,王涛. 环糊精介导强化氧化去除水中有机污染物综述. 环境工程. 2022(09): 246-252 . 本站查看
    9. 张红要. 微滤去除悬浮物和天然有机物的试验研究. 水利科学与寒区工程. 2022(10): 12-15 .
    10. 杨佳奇. 纳滤深度处理技术在饮用水厂的应用与展望. 给水排水. 2022(S2): 593-599 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.3 %FULLTEXT: 8.3 %META: 89.7 %META: 89.7 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.6 %其他: 10.6 %China: 0.8 %China: 0.8 %[]: 0.2 %[]: 0.2 %上海: 5.5 %上海: 5.5 %东莞: 1.7 %东莞: 1.7 %临汾: 0.2 %临汾: 0.2 %临沂: 0.2 %临沂: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %伊犁: 0.2 %伊犁: 0.2 %佛山: 0.6 %佛山: 0.6 %保定: 0.8 %保定: 0.8 %信阳: 0.6 %信阳: 0.6 %北京: 7.7 %北京: 7.7 %十堰: 1.4 %十堰: 1.4 %南京: 2.7 %南京: 2.7 %厦门: 0.3 %厦门: 0.3 %台州: 1.4 %台州: 1.4 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.6 %哈尔滨: 0.6 %唐山: 0.2 %唐山: 0.2 %嘉兴: 1.6 %嘉兴: 1.6 %大连: 0.6 %大连: 0.6 %天津: 5.0 %天津: 5.0 %太原: 0.5 %太原: 0.5 %宁波: 0.9 %宁波: 0.9 %宜春: 0.5 %宜春: 0.5 %宣城: 0.8 %宣城: 0.8 %宿州: 0.3 %宿州: 0.3 %常州: 0.8 %常州: 0.8 %常德: 0.2 %常德: 0.2 %广州: 0.6 %广州: 0.6 %张家口: 0.3 %张家口: 0.3 %徐州: 0.8 %徐州: 0.8 %成都: 0.8 %成都: 0.8 %扬州: 2.3 %扬州: 2.3 %无锡: 0.2 %无锡: 0.2 %昆明: 0.3 %昆明: 0.3 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.7 %杭州: 1.7 %武汉: 1.4 %武汉: 1.4 %江门: 0.9 %江门: 0.9 %沈阳: 0.2 %沈阳: 0.2 %济南: 0.5 %济南: 0.5 %济源: 0.2 %济源: 0.2 %海口: 0.5 %海口: 0.5 %清远: 0.2 %清远: 0.2 %温州: 1.4 %温州: 1.4 %湖州: 0.5 %湖州: 0.5 %漯河: 11.3 %漯河: 11.3 %烟台: 0.2 %烟台: 0.2 %盐城: 0.3 %盐城: 0.3 %石家庄: 0.6 %石家庄: 0.6 %秦皇岛: 0.2 %秦皇岛: 0.2 %绍兴: 0.2 %绍兴: 0.2 %舟山: 0.2 %舟山: 0.2 %芒廷维尤: 6.3 %芒廷维尤: 6.3 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.2 %苏州: 0.2 %萍乡: 0.2 %萍乡: 0.2 %衡阳: 0.3 %衡阳: 0.3 %衢州: 1.1 %衢州: 1.1 %西宁: 9.5 %西宁: 9.5 %西安: 0.8 %西安: 0.8 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.6 %运城: 1.6 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.1 %郑州: 1.1 %重庆: 0.6 %重庆: 0.6 %长沙: 3.0 %长沙: 3.0 %长治: 0.2 %长治: 0.2 %阳泉: 0.3 %阳泉: 0.3 %青岛: 0.5 %青岛: 0.5 %其他China[]上海东莞临汾临沂乌鲁木齐伊犁佛山保定信阳北京十堰南京厦门台州合肥哈尔滨唐山嘉兴大连天津太原宁波宜春宣城宿州常州常德广州张家口徐州成都扬州无锡昆明晋城朝阳杭州武汉江门沈阳济南济源海口清远温州湖州漯河烟台盐城石家庄秦皇岛绍兴舟山芒廷维尤芝加哥苏州萍乡衡阳衢州西宁西安贵阳运城遵义邯郸郑州重庆长沙长治阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (571) PDF downloads(15) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return