Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SAI Shi-jie, LI Mai-jun, DANG Ping, LIU Hui, ZHANG Na, HUANG Xia. APPLICATION OF HIGH SEPARATION NANOFILTRATION PROCESS IN ZERO DISCHARGE OF HIGH SALT WASTEWATER FROM COAL CHEMICAL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 173-178. doi: 10.13205/j.hjgc.202107024
Citation: SAI Shi-jie, LI Mai-jun, DANG Ping, LIU Hui, ZHANG Na, HUANG Xia. APPLICATION OF HIGH SEPARATION NANOFILTRATION PROCESS IN ZERO DISCHARGE OF HIGH SALT WASTEWATER FROM COAL CHEMICAL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 173-178. doi: 10.13205/j.hjgc.202107024

APPLICATION OF HIGH SEPARATION NANOFILTRATION PROCESS IN ZERO DISCHARGE OF HIGH SALT WASTEWATER FROM COAL CHEMICAL INDUSTRY

doi: 10.13205/j.hjgc.202107024
  • Received Date: 2021-02-27
    Available Online: 2022-01-18
  • A high separation nanofiltration system consisting of 3 sub-nanofiltration systems was proposed and its effect in zero discharge project of high salt wastewater from coal chemical industry was analyzed.Resultsshowed that the average rejection rates of SO42- and Cl- were 99.7% and-13.7% respectively, and the average water recovery rate was 81.9%, which indicated a good separation effect of monovalent and divalent salts. The fluctuation of water recovery rates and operating pressures of nanofiltration system and its subsystems in continuous operation were small, and the system operation stability was high. The average rejection rates of COD, Ca2+ and Mg2+ were 47.6%, 76.9% and 86.0% respectively, while the cleaning frequencies were 2.1, 0 and 1.0 times per month respectively, which indicated that the system had a high anti-fouling performance. The plant demonstrated that the high separation nanofiltration system had a promising prospect in the field of zero discharge of high salt wastewater.
  • [1]
    何睦盈,张亚峰.冷冻脱硝-纳滤-热泵蒸发技术处理高盐废水[J].给水排水,2013,39(11):60-63.
    [2]
    赛世杰.纳滤膜在高盐废水零排放领域的分盐性能研究[J].工业水处理,2017,37(9):75-78.
    [3]
    王晓琳,丁宁.反渗透和纳滤技术与应用[M].北京:化学工业出版社,2005.
    [4]
    韩永萍,林强,李亚秋.纳滤膜传质过程的研究[J].化学世界,2011,52(12):760-764

    ,733,730,742.
    [5]
    王钊.高分子膜错流纳滤过程的理论分析与有限元模拟[D].济南:山东大学,2014.
    [6]
    VEZZANI D,BANDINI S.Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes[J].Desalination,2002,149:477-483.
    [7]
    王智.纳滤截留无机离子特性及机理研究[D].北京:清华大学,2018.
    [8]
    RAUTENBACH R,GROSCHL A.Separation potential of nanofiltration membranes[J].Desalination,1990,77:73-84.
    [9]
    GARCIA A J,DICKSON J M.Mathematical modeling of nanofiltration membranes with mixed electrolyte solutions[J].Journal of Membrane Science,2004,235:1-13.
    [10]
    DEY T K,RAMACHANDHRAN V,MISRA B M.Selectivity of anionic species in binary mixed electrolyte systems for nanofiltration membranes[J].Desalination,2000,127:165-175.
    [11]
    熊日华,何灿,马瑞,等.高盐废水分盐结晶工艺及其技术经济分析[J].煤炭科学技术,2018,46(9):37-43.
    [12]
    李东,桑华俭,李杨,等.高盐废水零排放结晶盐资源化工艺分析与比较[J].工业用水与废水,2019,50(6):1-5.
    [13]
    姚敏,于双恩,金政伟,等.煤化工含盐废水纳滤分盐效果研究[J].煤炭加工与综合利用,2020(6):46-50.
    [14]
    蒋路漫,周振,田小测,等.电厂烟气脱硫废水零排放工艺中试研究[J].热力发电,2019,48(1):103-109.
    [15]
    徐志清,赵焰,陆梦楠,等.基于膜法的火电厂废水零排放技术研究及应用[J].中国电机工程学报,2019,39(增刊):148-154.
    [16]
    邵国华,刘艳军,雍骏.纳滤膜处理脱硫废水近零排放资源化实验研究[J].膜科学与技术,2019,39(6):124-128.
    [17]
    江成广.煤化工与矿井水浓盐水资源化利用技术开发[J].煤化工,2019,47(3):13-16.
    [18]
    窦晓春.煤化工高盐水近零排放及分质盐技术研究[D].北京:北京化工大学,2018.
    [19]
    赛世杰,党平,张震,等.高水回收率和高硫酸根截留率的组合纳滤分盐系统:201721223252.6[P].2017-09-22.
    [20]
    李琨.纳滤分离煤化工浓盐水的效能及膜污染机理研究[D].哈尔滨:哈尔滨工业大学,2020.
    [21]
    MIR F Q,SHUKLA A.Negative rejection of NaCl in ultrafiltration of aqueous solution of NaCl and KCl using sodalite octahydrate zeolite-clay charged ultrafiltration membrane[J].Industrial & Engineering Chemistry Research,2010,49.
    [22]
    HAJIBABANIA S,VERLIEFDE A,MC DONALD J A,et al.Fate of trace organic compounds during treatment by nanofiltration[J].Journal of Membrane Science,2011,373:130-139.
    [23]
    KOTRAPPANAVAR N S,HUSSAIN A A,ABASHAR M E E,et al.Prediction of physical properties of nanofiltration membranes for neutral and charged solutes[J].Desalination,2011,280:174-182.
    [24]
    王帅,郭慧枝,袁江龙,等.煤化工高盐废水的纳滤膜分盐效果分析[J].工业用水与废水,2019,50(3):35-40.
    [25]
    张生兰.纳滤+高压反渗透+蒸发结晶组合工艺在煤化工废水零排放中的应用[J].节能环保,2020,10(7):6-8.
    [26]
    夏俊方.纳滤膜在高盐废水零排放应用中的分盐特征研究[J].工业用水与废水,2020,51(1):28-31.
    [27]
    张小亚,苑宏英,石雪莉,等.氯化钠/硫酸钠体系的纳滤分盐试验分析[J].膜科学与技术,2020,40(5):111-117.
  • Relative Articles

    [1]LIU Wenkai, WANG Kunpeng, WANG Xiaomao, HUANG Xia. HIGHLY SELECTIVE NANOFILTRATION SEPARATION TECHNOLOGY FACILITATES RESOURCE EXTRACTION AND RECOVERY FROM HIGH SALINITY ENVIRONMENTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 29-41. doi: 10.13205/j.hjgc.202409003
    [2]KONG Wanting, LI Xuesong, WANG Zhiwei. RECENT ADVANCES IN ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY TECHNOLOGY FOR CHARACTERIZATION OF FOULING AND MASS TRANSFER PROCESSES ON NANOFILTRATION AND REVERSE OSMOSIS MEMBRANES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 51-62. doi: 10.13205/j.hjgc.202409005
    [3]LI Ran, HOU Yanan, LI Haibo, LIU Zhihua, HAN Yi, ZHANG Daohong, SONG Yuanyuan, GUO Jianbo, HUANG Cong. IMPACT OF HIGH SALT ON HETEROTROPHIC COUPLED SULFUR AUTOTROPHIC (HSAD) PROCESS AND ECTOINE MITIGATION STRATEGY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 79-88. doi: 10.13205/j.hjgc.202412011
    [4]ZHANG Lele, GUO Lei, CHENG Zhigang, YANG Zhilin, MA Yue, QIN Xin, YANG Chaosi. A CASE STUDY ON TREATMENT OF REFRACTORY REVERSE OSMOSIS CONCENTRATED BRINE WITH HIGH ALKALINITY, HIGH BROMINE BY DUAL MEMBRANE TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 236-240,328. doi: 10.13205/j.hjgc.202312029
    [5]FENG Guizhen, HUANG Lin, FAN Shixiu. EFFECT OF ORGANIC MATTER CHARACTERISTICS IN RAW WATER ON NANOFILTRATION MEMBRANE FOULING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 1-6,42. doi: 10.13205/j.hjgc.202302001
    [6]XU Min, DU Hongyu, GUO Jiaming, ZHAO Xiaodan, LU Wei, SUN Chao, CHEN Yu, ZHOU Zhen. A PILOT-SCALE EXPERIMENT FOR ZERO LIQUID DISCHARGE AND RESOURCE RECOVERY OF FLUE GAS DESULFURIZATION WASTEWATER IN COAL-FIRED POWER PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 169-175. doi: 10.13205/j.hjgc.202210023
    [7]ZHANG Wen, LIN Chang-xi, PENG Yong-zhen. RECOMMENDATIONS ON INTEGRATION AND OPTIMIZATION OF NEAR-ZERO DISCHARGE TECHNOLOGY FOR WASTEWATER FROM MODERN COAL CHEMICAL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 41-45,109. doi: 10.13205/j.hjgc.202111004
    [8]YANG Zhe, DAI Ruo-bin, WEN Yue, WANG Li, WANG Zhi-wei, TANG Chu-yang. RECENT PROGRESS OF NANOFILTRATION MEMBRANE IN WATER TREATMENT AND WATER REUSE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 1-12. doi: 10.13205/j.hjgc.202107001
    [9]LIU Mu, WANG Shao-hua, WANG Tong-chun, DUAN Meng-yuan, SU Ying-qiang, HAN Hui-ming, LIN Xiao-feng, LI Ze-hua. A LARGE-SCALE ENGINEERING APPLICATION OF MICROFILTRATION-NANOFILTRATION COMBINED TECHNOLOGY IN DRINKING WATER ADVANCED TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 151-155. doi: 10.13205/j.hjgc.202107020
    [10]SHI Xiao-lin, WANG Da-xin, LOU Shu-yi, CHEN Fu-qiang, LI Yu-you. APPLICATION OF ELECTRODIALYSIS TECHNOLOGY IN ZERO LIQUID DISCHARGE TREATMENT FOR WASTERWATER OF A CEMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 179-184. doi: 10.13205/j.hjgc.202107025
    [11]WANG Tao-ying, XU Jun-feng, HU Yan-yun, SHI Xiao-lei, HENG Shi-quan, YU Kuang. TREATMENT OF HIGH-SALT WASTEWATER FROM COAL-FIRED THERMAL POWER PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 112-116,145. doi: 10.13205/j.hjgc.202001017
    [17]Wu Tie Zhao Chunli Liu Dajun Gu Rui, . EXPLORATION OF WASTEWATER ZERO-EMISSION TECHNOLOGIES IN IRON AND STEEL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 146-149. doi: 10.13205/j.hjgc.201504031
  • Cited by

    Periodical cited type(16)

    1. 刘飞飞,武彦巍,王文涛,唐彤,马海龙. 膜技术与蒸发结晶工艺在VB_(12)高盐废水零排放中的应用. 工业水处理. 2025(03): 219-226 .
    2. 王虹. 纳滤技术在饮用水水质提标工程中的应用与实践. 价值工程. 2024(04): 97-99 .
    3. 刘成,贾丽晴,雍绍文,钱江,王君成,王钟尧,赵联芳,胡凯. 我国典型地区水厂纳滤净化系统产生浓水的水质特征及处理需求分析. 净水技术. 2024(06): 1-8+19 .
    4. 张曼曼,段锋,石绍渊,李玉平,周玉生. 焦化尾水资源化回用集成工艺中试. 化工环保. 2024(05): 736-743 .
    5. 肖秀伟,黄伟. 纳滤分盐技术在废水零排放中的发展及应用. 煤化工. 2024(05): 53-57 .
    6. 王小强,程海涛,陈哲,袁维乾. 含盐量及pH变化对高盐废水除硬除硅效果影响研究. 煤炭工程. 2024(12): 19-25 .
    7. 刘晶,李立峰,阿音嘎,李泽. 煤化工中的焦化废水污染强化活性炭处理工艺研究. 环境科学与管理. 2023(04): 114-119 .
    8. 张锐,袁进,李超. 焦化废水浓盐水零排放处理技术研究进展. 工业水处理. 2023(06): 15-21 .
    9. 张淳,赵晓丹,宋欣,赵琦琦,陈承启,杨春艳,张茂楠,夏庆,周振. 纳滤处理燃机电厂清洗废液及膜污染研究. 工业水处理. 2023(07): 78-85 .
    10. 崔岩. 关于煤化工废水零排放工程中膜集成技术的分析. 清洗世界. 2023(07): 7-8+12 .
    11. 李鹏,孙琪琪,王浩,陈阔,谢腾腾,牛青山. 碟管式高选择性纳滤膜的分盐实验及工业化示范. 水处理技术. 2023(09): 91-95 .
    12. 张淳,周明,姚大鹏,董鑫,顾玉林,庄力. 高盐废水除硅除氟处理工艺试验研究. 环境工程. 2023(S2): 79-81+87 . 本站查看
    13. 赵景超,谭明. 表面活性剂对电渗析减量化工业含盐废水的影响. 化工进展. 2023(S1): 529-535 .
    14. 马海龙. 煤制乙二醇浓盐水分盐结晶工艺探讨. 盐科学与化工. 2022(03): 43-45 .
    15. 徐敏,杜洪宇,郭家明,赵晓丹,卢卫,孙超,陈宇,周振. 面向物质资源化的燃煤电厂脱硫废水零排放工艺研究. 环境工程. 2022(10): 169-175 . 本站查看
    16. 王虹,王辉. 反渗透纳滤耦合技术在某煤化工改造工程中的应用. 山西化工. 2022(07): 124-125+139 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (269) PDF downloads(20) Cited by(22)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return