Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DING Jian-ning, GONG Hui, WANG Shun-yu, CUI Rong-rong, XU En-hui, XUE Yong-gang, DAI Xiao-hui, GU Guo-wei. RESEARCH REVIEW ON APPLICATION OF HYDROCYCLONE IN WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 1-6. doi: 10.13205/j.hjgc.202108001
Citation: DING Jian-ning, GONG Hui, WANG Shun-yu, CUI Rong-rong, XU En-hui, XUE Yong-gang, DAI Xiao-hui, GU Guo-wei. RESEARCH REVIEW ON APPLICATION OF HYDROCYCLONE IN WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 1-6. doi: 10.13205/j.hjgc.202108001

RESEARCH REVIEW ON APPLICATION OF HYDROCYCLONE IN WASTEWATER TREATMENT

doi: 10.13205/j.hjgc.202108001
  • Received Date: 2020-10-31
    Available Online: 2022-01-18
  • Hydrocyclone separators have advantages of high separation efficiency, simplicity, reliability and low cost, which has been widely used in various separation scenarios, especially in wastewater treatment in recent years. This article reviewed the operating parameters (feed flow rate, feed concentration, feed pressure), structural design parameters (overflow pipe insertion depth, underflow pipe diameter, reflux angle) and configuration types (W type, parabolic type, completely cylindrical type) on the hydrocyclones separation performance. Optimizing the operating parameters could enhance the separation efficiency; the flow field generated when the ratio of overflow pipe insertion depth to cylindrical cross section diameter (L0/D) equaled 1.0 was conducive to separation; the underflow pipe diameter had an optimal range; combining with water source heat pump, the optimal suction angle was 90°. The recent progress of hydrocyclone research and application included promoting microbial aggregates (including increasing sludge hydrolysis rate and improving sedimentation performance), separating specific particulate microorganisms (including anaerobic ammonia oxidizing bacteria granular sludge) and removing or recovering substances with specific density (including suspended organic matter, mud sand, metal particles), which opened up new perspectives for hydrocyclones future application in wastewater treatment.
  • [1]
    TIAN J Y,NI L,SONG T,et al.An overview of operating parameters and conditions in hydrocyclones for enhanced separations[J].Separation and Purification Technology,2018,206:268-285.
    [2]
    VEGA-GARCIA D,BRITO-PARADA P R,CILLIERS J J.Optimising small hydrocyclone design using 3D printing and CFD simulations[J].Chemical Engineering Journal,2018,350:653-659.
    [3]
    赵立新,蒋明虎,孙德智.旋流分离技术研究进展[J].化工进展,2005,24(10):1118-1123.
    [4]
    隋元伟,贾广如,许高洁,等.水力旋流器研究现状及其在煤化工废水处理中的应用前景[J].过程工程学报,2019,19(2):235-245.
    [5]
    HE F Q,WANG H L,WANG J G,et al.Experimental study of mini-hydrocyclones with different vortex finder depths using Particle Imaging Velocimetry[J].Separation and Purification Technology,2020,236:116296.
    [6]
    TIAN J Y,NI L,SONG T,et al.Numerical study of foulant-water separation using hydrocyclones enhanced by reflux device:Effect of underflow pipe diameter[J].Separation and Purification Technology,2019,215:10-24.
    [7]
    FU S C,HUA W J,YUAN H X,et al.Study on the light medium separation of waste plastics with hydrocyclones[J].Waste Management,2019,91:54-61.
    [8]
    NIAZI S,HABIBIAN M,RAHIMI M.Performance evaluation of a uniflow mini-hydrocyclone for removing fine heavy metal particles from water[J].Chemical Engineering Research and Design,2017,126:89-96.
    [9]
    王升贵,陈文梅,褚良银,等.水力旋流器分离理论的研究与发展趋势[J].流体机械,2005,33(7):36-40.
    [10]
    王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J].热能动力工程,2003,18(4):337-342.
    [11]
    SONG T,TIAN J Y,NI L,et al.Experimental study on liquid flow fields in de-foulant hydrocyclones with reflux ejector using particle image velocimetry[J].Separation and Purification Technology,2020,240:116555.
    [12]
    SONG T,TIAN J Y,NI L,et al.Experimental study on performance of a de-foulant hydrocyclone with different reflux devices for sewage source heat pump[J].Applied Thermal Engineering,2019,149:354-365.
    [13]
    JIANG L Y,LIU P K,YANG X H,et al.Experimental research on the separation performance of W-shaped hydrocyclone[J].Powder Technology,2020,372:532-541.
    [14]
    JIANG L Y,LIU P K,ZHANG Y K,et al.Design boundary layer structure for improving the particle separation performance of a hydrocyclone[J].Powder Technology,2019,350:1-14.
    [15]
    SUN Y X,LIU Y,ZHANG Y H,et al.Hydrocyclone-induced pretreatment for sludge solubilization to enhance anaerobic digestion[J].Chemical Engineering Journal,2019,374:1364-1372.
    [16]
    XU J P,SUN Y X,LIU Y,et al.In-situ sludge settleability improvement and carbon reuse in SBR process coupled with hydrocyclone[J].Science of The Total Environment,2019,695:133825.
    [17]
    LIU Y,WAND H L,XU Y X,et al.Sludge disintegration using a hydrocyclone to improve biological nutrient removal and reduce excess sludge[J].Separation and Purification Technology,2017,177:192-199.
    [18]
    PECAREVIC M,MIKUS J,PRUSINA I,et al.New role of hydrocyclone in ballast water treatment[J].Journal of Cleaner Production,2018,188:339-346.
    [19]
    陈进富.油田采出水处理技术与进展[J].环境工程,2000,18(1):18-20.
    [20]
    GOROBETS A V,TARABARA V V.Separation performance of desanding and deoiling hydrocyclones treating three-phase feeds:effect of oil-particle aggregates[J].Separation and Purification Technology,2020,237:116466.
    [21]
    LV W J,DANG Z H,HE Y,et al.UU-type parallel mini-hydrocyclone group for oil-water separation in methanol-to-olefin industrial wastewater[J].Chemical Engineering and Processing-Process Intensification,2020,149:107846.
    [22]
    GOLMAEI M,KINNARINEN T,JERNSTROM E,et al.Efficient separation of hazardous trace metals and improvement of the filtration properties of green liquor dregs by a hydrocyclone[J].Journal of cleaner production,2018,183:162-171.
    [23]
    徐晓军,韦韬,魏艳平.通沟污泥处理技术的发展[J].环境生态学,2020,2(8):82-88.
    [24]
    LIU L,ZHAO L X,YANG X,et al.Innovative design and study of an oil-water coupling separation magnetic hydrocyclone[J].Separation and Purification Technology,2019,213:389-400.
  • Relative Articles

    [1]YAN Dongjie, ZHANG Xiaohai, YUAN Liangyu, YU Ya. EFFECT OF WIRE ELECTRODE STRUCTURE PARAMETERS ON DUST REMOVAL PERFORMANCE OF PERFORATED PLATE ELECTROSTATIC PRECIPITATORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 61-68,146. doi: 10.13205/j.hjgc.202305009
    [2]HE Zhuorong, LI Xianying, WEI Beibei. DETERMINATION OF COD IN WATER SAMPLES BY BiVO4/rGO BASED ON PHOTOELECTROCHEMICAL DETERMINATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 205-212. doi: 10.13205/j.hjgc.202302027
    [3]MAO Yu, CHEN Zhuo, LU Yun, WU Qianyuan, WU Yinhu, HU Hongying. ADVANCES IN MICROBIAL INACTIVATION BY FERRATE AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 1-7. doi: 10.13205/j.hjgc.202204001
    [4]CHEN Xinyu, HOU Bingqian, GENG Ru, ZHOU Xiangtong, WU Zhiren, WEI Jing. A REVIEW OF MEMBRANE BIOFOULING CONTROL IN WATER TREATMENT BASED ON QUORUM SENSING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 251-259. doi: 10.13205/j.hjgc.202211033
    [5]GUO Yun, LI Zhouyan, WANG Zhiwei. RESEARCH PROGRESS OF ELECTROCHEMICAL MEMBRANE FILTRATION FOR WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 253-269. doi: 10.13205/j.hjgc.202212034
    [6]QIN Lan-lan, HUANG Hai-ou. RECENT RESEARCH ADVANCES AND FUTURE PROSPECT OF PARTICLE TRANSPORT MODELS FOR POROUS MEMBRANE FILTRATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 54-61,93. doi: 10.13205/j.hjgc.202107006
    [7]YANG Zhe, DAI Ruo-bin, WEN Yue, WANG Li, WANG Zhi-wei, TANG Chu-yang. RECENT PROGRESS OF NANOFILTRATION MEMBRANE IN WATER TREATMENT AND WATER REUSE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 1-12. doi: 10.13205/j.hjgc.202107001
    [8]YUAN Jian, QIAN Ya-jie, XUE Gang, ZHANG Quan, LI Qian, LIU Zi-hao, LI Xian-ying. REMOVAL OF CADMIUM AND LEAD IN WATER BY MAGNETIC CARBON PREPARED FROM ACTIVATED SLUDGE WITH HYDROTHERMAL CARBONIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 55-62. doi: 10.13205/j.hjgc.202002007
    [9]YE Guo-jie, WANG Yi-xian, LUO Pei, YANG Xing-zhou, WEI Jing-yue, HU Yun, SERGEI Preis, WEI Chao-hai. FORMATION MECHANISM OF ACTIVE SPECIES IN ADVANCED OXIDATION TECHNOLOGIES AND ANALYSIS ON ITS TECHNICAL CHARACTERISTICS IN WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 1-15. doi: 10.13205/j.hjgc.202002001
    [13]Chen Ting Yu Jian Wang Feng Ren Wenhui, . ANALYSIS OF THREE-PHASE INNER-CIRCULATION BIOLOGICAL FLUIDIZED BED OPERATION FACTORS BASED ON CFD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 19-23.
  • Cited by

    Periodical cited type(8)

    1. 陈嘉祺,倪康祥,马东方,阳重阳,邓根明. 旋流分离器分流比对污泥分离效能的影响. 广东化工. 2025(05): 104-106+112 .
    2. 杨小波,章衍隐,许妍霞. 水力旋流器流场特征和分级分离性能研究综述. 广东化工. 2024(03): 104-107 .
    3. 黄英豪,戴济群. 我国疏浚淤泥处置与利用研究进展. 中国水利. 2024(03): 25-28 .
    4. 武思谨. 水力旋流分离技术在餐厨垃圾除油领域的试验研究. 绿色科技. 2023(06): 191-196 .
    5. 张文华,李东来,刘秀林,张宏斌,郭建华,陈淑鑫. 中心复合设计的水力旋流器结构优化与试验研究. 机械科学与技术. 2023(07): 993-999 .
    6. 张文华,李东来,徐京明,郭建华,刘秀林. 锥形溢流管开缝水力旋流器流场特性与分离性能研究. 流体机械. 2023(08): 64-72 .
    7. 邵彦鋆,王冰,周瑜,施俊,宗政辉,刘国强,陶翔,张欣,黄凯文,王燕,王硕,李激. 污泥致密系统处理技术在污水处理厂的应用初探. 环境工程. 2023(09): 72-79 . 本站查看
    8. 杨蕊,吕超,朱宝锦,张磊,肖迎松. 往复泵作用下结构参数对旋流器流场特性影响. 机床与液压. 2022(15): 82-86 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.0 %FULLTEXT: 8.0 %META: 90.3 %META: 90.3 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.3 %其他: 14.3 %其他: 0.1 %其他: 0.1 %China: 0.6 %China: 0.6 %Germany: 0.2 %Germany: 0.2 %[]: 0.2 %[]: 0.2 %上海: 5.7 %上海: 5.7 %东莞: 2.3 %东莞: 2.3 %东营: 0.4 %东营: 0.4 %临汾: 0.1 %临汾: 0.1 %九江: 0.5 %九江: 0.5 %伊犁: 0.2 %伊犁: 0.2 %佛山: 0.3 %佛山: 0.3 %佳木斯: 0.3 %佳木斯: 0.3 %保定: 0.1 %保定: 0.1 %兰州: 0.6 %兰州: 0.6 %北京: 5.9 %北京: 5.9 %南京: 1.7 %南京: 1.7 %南充: 0.4 %南充: 0.4 %南宁: 0.2 %南宁: 0.2 %南昌: 0.4 %南昌: 0.4 %南通: 0.1 %南通: 0.1 %厦门: 0.3 %厦门: 0.3 %台北: 0.1 %台北: 0.1 %台州: 0.4 %台州: 0.4 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.4 %呼和浩特: 0.4 %和田: 0.2 %和田: 0.2 %哈尔滨: 0.6 %哈尔滨: 0.6 %嘉兴: 1.4 %嘉兴: 1.4 %固原: 0.1 %固原: 0.1 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %大庆: 2.6 %大庆: 2.6 %大连: 0.2 %大连: 0.2 %天津: 1.7 %天津: 1.7 %太原: 0.3 %太原: 0.3 %威海: 0.3 %威海: 0.3 %安康: 0.7 %安康: 0.7 %安阳: 0.1 %安阳: 0.1 %宜宾: 0.4 %宜宾: 0.4 %宜昌: 0.1 %宜昌: 0.1 %宜春: 0.3 %宜春: 0.3 %宣城: 0.6 %宣城: 0.6 %宿迁: 0.1 %宿迁: 0.1 %崇左: 0.2 %崇左: 0.2 %巴音郭楞: 0.4 %巴音郭楞: 0.4 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 2.3 %广州: 2.3 %廊坊: 0.1 %廊坊: 0.1 %张家口: 1.4 %张家口: 1.4 %德阳: 0.2 %德阳: 0.2 %成都: 1.7 %成都: 1.7 %扬州: 0.5 %扬州: 0.5 %无锡: 0.3 %无锡: 0.3 %日照: 0.2 %日照: 0.2 %昆明: 2.2 %昆明: 2.2 %晋城: 0.2 %晋城: 0.2 %朝阳: 0.8 %朝阳: 0.8 %杭州: 1.9 %杭州: 1.9 %松原: 0.1 %松原: 0.1 %榆林: 0.2 %榆林: 0.2 %武汉: 1.5 %武汉: 1.5 %江门: 0.1 %江门: 0.1 %沈阳: 0.6 %沈阳: 0.6 %沧州: 0.1 %沧州: 0.1 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %济宁: 0.2 %济宁: 0.2 %济源: 0.2 %济源: 0.2 %海口: 0.4 %海口: 0.4 %淮北: 0.4 %淮北: 0.4 %深圳: 0.5 %深圳: 0.5 %清远: 0.1 %清远: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.4 %湖州: 0.4 %漯河: 1.4 %漯河: 1.4 %潍坊: 0.3 %潍坊: 0.3 %濮阳: 0.2 %濮阳: 0.2 %烟台: 0.6 %烟台: 0.6 %珠海: 0.1 %珠海: 0.1 %盐城: 0.2 %盐城: 0.2 %盘锦: 0.2 %盘锦: 0.2 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 1.2 %福州: 1.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 0.5 %绍兴: 0.5 %绥化: 0.1 %绥化: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 6.3 %芒廷维尤: 6.3 %芝加哥: 2.1 %芝加哥: 2.1 %苏州: 1.2 %苏州: 1.2 %茂名: 0.1 %茂名: 0.1 %蚌埠: 0.2 %蚌埠: 0.2 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 8.3 %西宁: 8.3 %西安: 1.0 %西安: 1.0 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.5 %赣州: 0.5 %达州: 0.1 %达州: 0.1 %运城: 0.8 %运城: 0.8 %连云港: 0.1 %连云港: 0.1 %遂宁: 0.1 %遂宁: 0.1 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.8 %郑州: 1.8 %重庆: 0.9 %重庆: 0.9 %金昌: 0.1 %金昌: 0.1 %铁岭: 0.1 %铁岭: 0.1 %铜陵: 0.1 %铜陵: 0.1 %银川: 0.2 %银川: 0.2 %锦州: 0.1 %锦州: 0.1 %镇江: 0.1 %镇江: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 1.3 %长沙: 1.3 %长治: 0.1 %长治: 0.1 %阜新: 0.1 %阜新: 0.1 %阜阳: 0.4 %阜阳: 0.4 %阳泉: 0.2 %阳泉: 0.2 %青岛: 1.7 %青岛: 1.7 %韶关: 0.1 %韶关: 0.1 %香港: 0.1 %香港: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ChinaGermany[]上海东莞东营临汾九江伊犁佛山佳木斯保定兰州北京南京南充南宁南昌南通厦门台北台州合肥呼和浩特和田哈尔滨嘉兴固原圣彼得堡大庆大连天津太原威海安康安阳宜宾宜昌宜春宣城宿迁崇左巴音郭楞常州常德广州廊坊张家口德阳成都扬州无锡日照昆明晋城朝阳杭州松原榆林武汉江门沈阳沧州泸州洛阳济南济宁济源海口淮北深圳清远温州湖州漯河潍坊濮阳烟台珠海盐城盘锦眉山石家庄福州秦皇岛绍兴绥化绵阳芒廷维尤芝加哥苏州茂名蚌埠衡阳衢州西宁西安贵阳赣州达州运城连云港遂宁遵义邯郸郑州重庆金昌铁岭铜陵银川锦州镇江长春长沙长治阜新阜阳阳泉青岛韶关香港马鞍山齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (860) PDF downloads(21) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return