Citation: | SHI Yu-cui, LUO Xin-yi, TANG Gang, YE Yan-chao, YOU Shao-hong. RESEARCH PROGRESS AND PROSPECTS OF CONSTRUCTED WETLAND-MICROBIAL FUEL CELL COUPLING SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 25-33. doi: 10.13205/j.hjgc.202108004 |
[1] |
SAMAL K,DASH R R,BHUNIA P.Design and development of a hybrid macrophyte assisted vermifilter for the treatment of dairy wastewater:a statistical and kinetic modelling approach[J].Ence of the Total Environment,2018,645(7):156-169.
|
[2] |
LI X H,ZHU W G,MENG G J,et al.Efficiency and kinetics of conventional pollutants and tetracyclines removal in integrated vertical-flow constructed wetlands enhanced by aeration[J].Journal of Environmental Management,2020,273:111-120.
|
[3] |
TEMEL F A,ÖZYAZICI G,USLU V R,et al.Full scale subsurface flow constructed wetlands for domestic wastewater treatment:3 years' experience[J].Environmental Progress & Sustainable Energy,2018,37(4):1348-1360.
|
[4] |
TURKER O C,TURE C,BOCUK H,et al.Evaluation of an innovative approach based on prototype engineered wetland to control and manage boron (B) mine effluent pollution[J].Environmental Science and Pollution Research International,2016,23(19):19302-19316.
|
[5] |
ZHANG X W,HU Z,HUU H N,et al.Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland[J].Water Research,2018,130(11):79-87.
|
[6] |
SGROI M,PELISSARI C,PAOLO R P,et al.Removal of organic carbon,nitrogen,emerging contaminants and fluorescing organic matter in different constructed wetland configurations[J].Chemical Engineering Journal,2018,332(9):619-627.
|
[7] |
ATIF M,MIKLAS S,RORY H,et al.Long-term performance of a representative integrated constructed wetland treating farmyard runoff[J].Ecological Engineering,2008,35(5):779-790.
|
[8] |
KHAN S,AHMAD I,SHAH T,et al.Use of constructed wetland for the removal of heavy metals from industrial wastewater[J].Journal of Environmental Management,2009,90(11):3451-3457.
|
[9] |
SPOKAS L A,VENEMAN P L M,SIMKINS S C,et al.Performance evaluation of a constructed wetland treating high-ammonium primary domestic wastewater effluent[J].Water Environment Research,2010,82(7):592-600.
|
[10] |
JAROO S S,JUMAAH G F,ABBAS T R.Photosynthetic microbial desalination cell to treat oily wastewater using microalgae chlorella vulgaris[J].Civil Engineering Journal,2019,5(12):2686-2699.
|
[11] |
MOAYEDI A,YARGHOLI B,PAZIRA E,et al.Investigated of desalination of saline waters by using dunaliella salina algae and its effect on water ions[J].Civil Engineering Journal,2019,5(11):2450-2460.
|
[12] |
WANG Y,LIU Y,ZHAN W,et al.Long-term stabilization of Cd in agricultural soil using mercapto-functionalized nano-silica (MPTS/nano-silica):a three-year field study[J].Ecotoxicology and Environmental Safety,2020,197:110600.
|
[13] |
LIU X L,ZHANG K,FAN L Q,et al.Intermittent micro-aeration control of methane emissions from an integrated vertical-flow constructed wetland during agricultural domestic wastewater treatment[J].Environmental ence & Pollution Research,2018,25(24):24426-24444.
|
[14] |
TINGRU Y,SHU H T,MARTIN R,et al.Biotransformation of Sulfluramid (N-ethyl perfluorooctane sulfonamide) and dynamics of associated rhizospheric microbial community in microcosms of wetland plants[J].Chemosphere,2018,211(7):379-389.
|
[15] |
SONG H L,ZHANG S,GUO J,et al.Vertical up-flow constructed wetlands exhibited efficient antibiotic removal but induced antibiotic resistance genes in effluent[J].Chemosphere,2018,203(4):434-441.
|
[16] |
TASCA A L,PUCCINI M,FLETCHER A.Terbuthylazine and desethylterbuthylazine:Recent occurrence,mobility and removal techniques[J].Chemosphere,2018,202(3):94-104.
|
[17] |
K"OREJE K O,KANDIE F J,VERGEYNST L,et al.Occurrence,fate and removal of pharmaceuticals,personal care products and pesticides in wastewater stabilization ponds and receiving rivers in the Nzoia Basin,Kenya[J].Science of the Total Environment,2018,637-638(4):336-348.
|
[18] |
YI X,TRAN N H,YIN T,et al.Removal of selected PPCPs,EDCs,and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system[J].Water Research,2017,121(5):46-60.
|
[19] |
CHONDE S G.International journal of microbial fuel cell?:a new approach of wastewater treatment with power generation.International Journal of Chemical,Environmental and Pharmaceutical Research,2014,5(1):8-12.
|
[20] |
QUAN X C,MEI Y,XU H D,et al.Optimization of Pt-Pd alloy catalyst and supporting materials for oxygen reduction in air-cathode microbial fuel cells[J].Electrochimica Acta,2015,165(2):72-77.
|
[21] |
SUN M,ZHAI L F,LI W W,et al.Harvest and utilization of chemical energy in wastes by microbial fuel cells[J].Chemical Society Reviews,2016,45(10):2847-2870.
|
[22] |
SANTORO C,ARBIZZANI C,ERABLE B,et al.Microbial fuel cells:from fundamentals to applications:a review[J].Journal of Power Sources,2017,356(3):225-244.
|
[23] |
LOGAN B E.Microbial Fuel Cells[M].John Wiley & Sons,Inc.:2007-12-21.
|
[24] |
WU L C,CHEN C Y,LIN T K,et al.Highly efficient removal of victoria blue R and bioelectricity generation from textile wastewater using a novel combined dual microbial fuel cell system[J].Chemosphere,2020,258:127326.
|
[25] |
CHEN C Y,TSAI T H,WU P S,et al.Selection of electrogenic bacteria for microbial fuel cell in removing Victoria blue R from wastewater[J].Journal of Environmental Science and Health,2018,53(2):108-115.
|
[26] |
CHEN C Y,WANG G H,TSAI T H,et al.Continuous bioelectricity generation through treatment of Victoria blue R:a novel microbial fuel cell operation[J].Journal of Environmental ence & Health Part A Toxic/hazardous Substances & Environmental Engineering,2017,52(9):916-920.
|
[27] |
DU H X,LI F S.Enhancement of solid potato waste treatment by microbial fuel cell with mixed feeding of waste activated sludge[J].Journal of Cleaner Production,2016,143(12):336-344.
|
[28] |
ZHANG S,SONG H L,YANG X L,et al.A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes[J].Bioresource Technology Biomass Bioenergy Biowastes Conversion Technologies Biotransformations Production Technologies,2018,256(2):224-231.
|
[29] |
ALI A,GRAEME J,GUILLERMO Z.Integration and optimization of pressure retarded osmosis with reverse osmosis for power generation and high efficiency desalination[J].Energy,2016,103(2):110-118.
|
[30] |
AKILI D,IBRAHIM K,JONG-MIHN W.Advances in seawater desalination technologies[J].Desalination,2007,221(1):47-69.
|
[31] |
REZK H,SAYED E T,AL-DHAIFALLAH M,et al.Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system[J].Energy,2019,175(2):423-433.
|
[32] |
ARDAKANI M N,GHOLIKANDI G B.Microbial fuel cells (MFCs) in integration with anaerobic treatment processes (AnTPs) and membrane bioreactors (MBRs) for simultaneous efficient wastewater/sludge treatment and energy recovery:a state-of-the-art review[J].Biomass and Bioenergy,2020,141:105726.
|
[33] |
WANG W J,ZHANG Y,LI M X,et al.Operation mechanism of constructed wetland-microbial fuel cells for wastewater treatment and electricity generation:a review[J].Bioresource Technology,2020,314:123808.
|
[34] |
YANG Y G,GUO J,SUN G P,et al.Characterizing the snorkeling respiration and growth of Shewanella decolorationis S12[J].Bioresource Technology,2013,128(10):472-478.
|
[35] |
ERABLE B,ETCHEVERRY L,BERGEL A.From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES):maximizing chemical oxygen demand (COD) removal from wastewater[J].Biofouling,2011,27(3):319-326.
|
[36] |
RAMIREZ-VARGAS C,AMANDA P,CARLOS A,et al.Microbial electrochemical technologies for wastewater treatment:principles and evolution from microbial fuel cells to bioelectrochemical-based constructed wetlands[J].Water,2018,10(9):1128-1156.
|
[37] |
DI L Y,LI Y,NIE L K,et al.Influence of plant radial oxygen loss in constructed wetland combined with microbial fuel cell on nitrobenzene removal from aqueous solution[J].Journal of Hazardous Materials,2020,394:122542.
|
[38] |
XIE T Y,JING Z Q,HU J,et al.Degradation of nitrobenzene-containing wastewater by a microbial-fuel-cell-coupled constructed wetland[J].Ecological Engineering,2018,112(12):65-71.
|
[39] |
FANG Z,SONG H L,CANG N,et al.Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation[J].Bioresource Technology,2013,144(6):165-171.
|
[40] |
OON Y L,ONG S A,HO L N,et al.Constructed wetland-microbial fuel cell for azo dyes degradation and energy recovery:influence of molecular structure,kinetics,mechanisms and degradation pathways[J].Science of the Total Environment,2020,720:137370.
|
[41] |
WEN H Y,ZHU H,YAN B X,et al.Treatment of typical antibiotics in constructed wetlands integrated with microbial fuel cells:roles of plant and circuit operation mode[J].Chemosphere,2020,250:126252.
|
[42] |
ZHANG S,YANG X L,LI H,et al.Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells[J].Bioresource Technology,2017,244(7):345-352.
|
[43] |
SAZ Ç,TURE C,TURKER O C,et al.Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater[J].Environmental Science and Pollution Research International,2018,25(9):8777-8792.
|
[44] |
REGMI R,NITISORAVUT R,KETCHAIMONGKOL J.A decade of plant-assisted microbial fuel cells:looking back and moving forward[J].Biofuels,2018,9(5):605-612.
|
[45] |
SONG H L,ZHANG S,LONG X Z,et al.Optimization of bioelectricity generation in constructed wetland-coupled microbial fuel cell systems[J].Water,2017,9(3):185-197.
|
[46] |
REGMI R,NITISORAVUT R,CHAROENROONGTAVEE S,et al.Earthen pot-plant microbial fuel cell powered by vetiver for bioelectricity production and wastewater treatment[J].Clean-Soil,Air,Water:A Journal of Sustainability and Environmental Safety,2018,46(3):1700193.
|
[47] |
XU F,OUYANG D L,RENE E R,et al.Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater[J].Bioresource Technology,2019,288:121462.
|
[48] |
FANG Z,CAO X,LI X X,et al.Biorefractory wastewater degradation in the cathode of constructed wetland-microbial fuel cell and the study of the electrode performance[J].International Biodeterioration & Biodegradation,2018,129(12):1-9.
|
[49] |
ADAM O,MOHAMEDJAFFER G,DYLLON G R.Investigating the performance of constructed wetland microbial fuel cells using three indigenous South African wetland plants[J].Journal of Water Process Engineering,2019,32:100930.
|
[50] |
LIANG Y X,ZHU H,BAUELOS G,et al.Constructed wetlands for saline wastewater treatment:a review[J].Ecological Engineering,2017,98(11):275-285.
|
[51] |
JAN V.Plants used in constructed wetlands with horizontal subsurface flow:a review[J].Hydrobiologia,2011,674(1):133-156.
|
[52] |
WANG J F,SONG X S,WANG Y H,et al.Bioelectricity generation,contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell[J].Bioresource Technology,2017,245(8):372-378.
|
[53] |
YANG Y,ZHAO Y Q,TANG C,et al.Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation[J].Chemical Engineering Journal,2020,392:123708.
|
[54] |
CHEN Z,HUANG Y C,LIANG J H,et al.A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere[J].Bioresource Technology,2012,108(1):55-59.
|
[55] |
VILLASENOR J,CAPILLA P,RODRIGO M A,et al.Operation of a horizontal subsurface flow constructed wetland:microbial fuel cell treating wastewater under different organic loading rates[J].Water Research,2013,47(17):6731-6738.
|
[56] |
OON Y L,ONG S A,HO L N,et al.Synergistic effect of up-flow constructed wetland and microbial fuel cell for simultaneous wastewater treatment and energy recovery[J].Bioresource Technology:Biomass,Bioenergy,Biowastes,Conversion Technologies,Biotransformations,Production Technologies,2016,203(12):190-197.
|
[57] |
LIU F,SUN L,WAN J B,et al.Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process[J].Journal of Environmental Ences,2020,89(8):252-263.
|
[58] |
FANG Z,CAO X,LI X X,et al.Electrode and azo dye decolorization performance in microbial-fuel-cell-coupled constructed wetlands with different electrode size during long-term wastewater treatment[J].Bioresource Technology,2017,238(4):450-460.
|
[59] |
YU B,LIU C L,WANG S Y,et al.Applying constructed wetland-microbial electrochemical system to enhance NH4+ removal at low temperature[J].Science of the Total Environment,2020,724:138017.
|
[60] |
LI H,CAI Y,GU Z L,et al.Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater[J].Chemosphere,2020,248:126014.
|
[61] |
LI J,LI H J,ZHENG J L,et al.Response of anodic biofilm and the performance of microbial fuel cells to different discharging current densities[J].Bioresource Technology,2017,233(2):1-6.
|
[62] |
WANG J F,SONG X S,WANG Y H,et al.Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes[J].Science of the Total Environment,2017,607/608(6):53-62.
|
[63] |
ROHIT R,DISHANT P,SHABNAM S,et al.Eco-electrogenic treatment of dyestuff wastewater using constructed wetland-microbial fuel cell system with an evaluation of electrode-enriched microbial community structures[J].Bioresource Technology,2019,285:121349.
|
[64] |
WANG Q,LV R Y,RENE E R,et al.Characterization of microbial community and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell treating Zn (Ⅱ) contaminated wastewater[J].Bioresource Technology,2020,302:122867.
|
[65] |
AN J,KIM B,NAM J,et al.Comparison in performance of sediment microbial fuel cells according to depth of embedded anode[J].Bioresource Technology,2013,127(9):138-142.
|
[66] |
CORBELLA C,GARFI M,PUIGAGUT J.Vertical redox profiles in treatment wetlands as function of hydraulic regime and macrophytes presence:surveying the optimal scenario for microbial fuel cell implementation[J].Science of the Total Environment,2014,470/471(9):754-758.
|
[67] |
DOHERTY L,ZHAO Y Q,ZHAO X H,et al.Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology[J].Chemical Engineering Journal,2015,266(12):74-81.
|
[68] |
XU L,ZHAO Y Q,DOHERTY L,et al.Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber[J].Scientific Reports,2016,6:26514.
|
[69] |
WANG J F,SONG X S,WANG Y H,et al.Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell[J].Bioresource Technology,2016,221(9):697-702.
|
[70] |
WANG J F,SONG X S,LI Q S,et al.Bioenergy generation and degradation pathway of phenanthrene and anthracene in a constructed wetland-microbial fuel cell with an anode amended with nZVI[J].Water Research,2019,150(11):340-348.
|
[71] |
SRIVASTAVA P,DWIVEDI S,KUMAR N,et al.Performance assessment of aeration and radial oxygen loss assisted cathode based integrated constructed wetland-microbial fuel cell systems[J].Bioresource Technology,2017,244(8):1178-1182.
|
[72] |
EMILIUS S,CEES J,DAVID P.Activated carbon mixed with marine sediment is suitable as bioanode material for spartina anglica sediment/plant microbial fuel cell:plant growth,electricity generation,and spatial microbial community diversity[J].Water,2019,11(9):1810-1832.
|
[73] |
WANG J F,SONG X S,WANG Y H,et al.Effects of electrode material and substrate concentration on the bioenergy output and wastewater treatment in air-cathode microbial fuel cell integrating with constructed wetland[J].Ecological Engineering,2017,99(11):191-198.
|
[74] |
HUANG S,ZHU G C,GU X.The relationship between energy production and simultaneous nitrification and denitrification via bioelectric derivation of microbial fuel cells at different anode numbers[J].Environmental Research,2020,184:109247.
|
[75] |
XU L,ZHAO Y Q,WANG X D,et al.Applying multiple bio-cathodes in constructed wetland-microbial fuel cell for promoting energy production and bioelectrical derived nitrification-denitrification process[J].Chemical Engineering Journal,2018,344(3):105-113.
|
[76] |
FU Y B,XU Q,ZAI X R,et al.Low electrical potential anode modified with Fe/ferric oxide and its application in marine benthic microbial fuel cell with higher voltage and power output[J].Applied Surface Science,2014,289(11):472-477.
|
[77] |
DORDIO A V,CARVALHO A J P.Organic xenobiotics removal in constructed wetlands,with emphasis on the importance of the support matrix[J].Journal of Hazardous Materials,2013,252/253(3):272-292.
|
[78] |
SRIVASTAVA P,YADAV A K,MISHRA B K.The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland[J].Bioresource Technology,2015,195(5):223-230.
|
[79] |
XU L,WANG B D,LIU X H,et al.Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland[J].Applied Energy,2018,214(1):83-91.
|
[80] |
LIU R B,ZHAO Y Q,SIBILLE C,et al.Evaluation of natural organic matter release from alum sludge reuse in wastewater treatment and its role in P adsorption[J].Chemical Engineering Journal,2016,302(5):120-127.
|
[81] |
XU L,ZHAO Y Q,FAN C,et al.First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring[J].Bioresource Technology,2017,243(6):846-854.
|
[82] |
IOANNIS I,JONATHAN W,JOHN G.Effects of flow-rate,inoculum and time on the internal resistance of microbial fuel cells[J].Bioresource Technology,2010,101(10):3520-3525.
|
[83] |
FANG Z,SONG H L,CANG N,et al.Electricity production from azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions[J].Biosensors and Bioelectronics,2015,68(12):135-141.
|
[84] |
SONG H L,LI H,ZHANG S,et al.Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands:effects of circuit operation mode and hydraulic retention time[J].Chemical Engineering Journal,2018,350(6):920-929.
|
[85] |
ZHONG F,YU C,CHEN Y,et al.Nutrient removal process and cathodic microbial community composition in integrated vertical-flow constructed wetland-microbial fuel cells filled with different substrates[J].Frontiers in Microbiology,2020,11:1896-1896.
|
[86] |
OON Y L,ONG S A,HO L N,et al.Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation[J].Bioresource Technology,2015,186(3):270-275.
|
[87] |
TEOH T P,ONG S A,HO L N,et al.Up-flow constructed wetland-microbial fuel cell:influence of floating plant,aeration and circuit connection on wastewater treatment performance and bioelectricity generation[J].Journal of Water Process Engineering,2020,36:101371.
|
[88] |
FREGUIA S,RABAEYY K,YUAN Z,et al.Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells[J].Water Research,2008,42(6/7):1387-1396.
|
[89] |
LIU S T,SONG H L,WEI S Z,et al.Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland-microbial fuel cell systems[J].Bioresource Technology,2014,166(5):575-583.
|
[90] |
FANG Z,CHENG S,CAO X,et al.Effects of electrode gap and wastewater condition on the performance of microbial fuel cell coupled constructed wetland[J].Environmental Technology Letters,2016,38(8):1051-1060.
|
[1] | WANG Guiyun, SANG Chunhui, XIAO Meng, NIE Yuxin, YANG Xintong, ZHANG Hongzhen, LI Xianglan. Environmental footprint analysis for contaminated soil remediation in paper mill based on SEFA tool[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 80-88. doi: 10.13205/j.hjgc.202501009 |
[2] | HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008 |
[3] | NIU Jianmin, ZANG Chong, WANG Zhenghua, ZHOU Min, PAN Wenjie, LI Hongyan. ENGINEERING APPLICATION OF ENHANCED ROOM TEMPERATURE DESORPTION IN REMEDIATION OF SOIL CONTAMINATED BY CHLORINATED HYDROCARBONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 107-113. doi: 10.13205/j.hjgc.202405014 |
[4] | WANG Biyun, SUN Ailin, XU Xuehuang. STRATEGIES AND PROJECT CASE OF WASTEWATER TREATMENT PLANTS RENEWAL AND REFORMATION FOR THE DUAL-CARBON GOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 81-89. doi: 10.13205/j.hjgc.202411009 |
[5] | MA Yuanyuan, WU Yang, WANG Puchun, CHEN Yinguang, ZHENG Xiong. RESEARCH PROGRESS ON ANAEROBIC CO-FERMENTATION OF WASTE-ACTIVATED SLUDGE TO PRODUCE ACID UNDER THE GOAL OF LOW CARBON[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 102-109. doi: 10.13205/j.hjgc.202401014 |
[6] | LI Shefeng, DU Shaoxia, BAO Shenxu, YAN Shuiping, LIU Ziyang. BIBLIOMETRIC ANALYSIS AND DEVELOPMENT TREND DISCUSSION OF CONTAMINATED SOIL REMEDIATION TECHNOLOGY IN INTERNATIONAL RESEARCH[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 329-336,342. doi: 10.13205/j.hjgc.202312041 |
[7] | CHEN Wenhao, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 37-44. doi: 10.13205/j.hjgc.202307006 |
[8] | XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022 |
[9] | DING Yi, YIN Jian, JIANG Hongtao, XIA Ruici, WEI Danqi, LUO Xinyuan. SYSTEM DYNAMICS PREDICTION OF CARBON PEAKING IN PEARL RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 22-29. doi: 10.13205/j.hjgc.202307004 |
[10] | REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023 |
[11] | CHEN Zhikang, LIU Liujun, YIN Lipu, YUE Rui, MAO Xuhui. RESEARCH PROGRESS OF ELECTRICAL RESISTANCE HEATING FOR SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 224-234,243. doi: 10.13205/j.hjgc.202204032 |
[12] | WU Baimiao, ZHANG Yimei, LI Shuai, GUO Wenjin, GUO Xiaoqian, WANG Senyao, LIANG Xi, GENG Xuewen. COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 130-137. doi: 10.13205/j.hjgc.202206017 |
[13] | WANG Mu, SONG Junjie, XIE Ronghuan, LI Weiping, LIU Guijian. EXPERIMENTAL STUDY OF H2O2 OXIDATION COUPLED WITH CHEMICAL WASHING TO REMEDY CHROMIUM-CONTAMINATED CLAYED SOIL FROM AN ELECTROPLATE FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 125-130. doi: 10.13205/j.hjgc.202208017 |
[14] | ZHAO Jinhui, LI Jingshun, WANG Panle, HOU Gaojie. A STUDY ON CARBON PEAKING PATHS IN HENAN, CHINA BASED ON LASSO REGRESSION-BP NEURAL NETWORK MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 151-156,164. doi: 10.13205/j.hjgc.202212020 |
[15] | DONG Jin-chi, WANG Xu-ying, CAI Bo-feng, WANG Jin-nan, LIU Hui, YANG Lu, XIA Chu-yu, LEI Yu. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 23-31,40. doi: 10.13205/j.hjgc.202110004 |
[16] | LIU Hui, CAI Bo-feng, ZHANG Li, WANG Zhen, CHEN Yang, XIA Chu-yu, YANG Lu, DONG Jin-chi, SONG Xiao-hui. RESEARCH ON CARBON DIOXIDE ABATEMENT TECHNOLOGIES AND COST IN CHINA'S POWER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 8-14. doi: 10.13205/j.hjgc.202110002 |
[17] | HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033 |
[18] | CUI Xiu-zhen, XU Shao-dong, GAO Han-bo, WANG Jun-xia, CAI Bo-feng. REFERENCE OF URBAN AIR POLLUTANTS EMISSION PATH FOR CARBON EMISSION PEAKING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 39-43. doi: 10.13205/j.hjgc.202011007 |
[19] | YANG Nan, LI Yan-xia, LV Chen, ZHAO Meng, LIU Zhong-liang, LIU Hao. CARBON EMISSION ACCOUNTING AND PEAK FORECASTING OF IRON & STEEL INDUSTRY IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 44-52. doi: 10.13205/j.hjgc.202011008 |
[20] | Luo Chengcheng Zhang Huanzhen Bi Lusha Zhu Hong, . PROGRESS ON REHABILITATING OIL CONTAMINATED SOIL BY SVE METHOD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 158-162. doi: 10.13205/j.hjgc.201510035 |
1. | 王贵云,桑春晖,肖萌,聂雨欣,杨欣桐,张红振,李香兰. 基于SEFA的造纸地块污染修复方案环境足迹案例研究. 环境工程. 2025(01): 80-88 . ![]() | |
2. | 杜林峰,王月玲,沈彦. 污染土壤绿色可持续修复理论及技术综述. 现代农业科技. 2024(03): 124-127+131 . ![]() | |
3. | 王永东,袁野,刘欣媛,李梦婷,刘骞,王津华,马建洪. 聚吡咯改性电极强化MFC驱动铀污染土壤的电动修复研究. 环境工程. 2024(02): 182-191 . ![]() | |
4. | 桑春晖,杨欣桐,张红振,肖萌,刘瑞平,孟藤藤,李香兰. 氰化物污染土壤修复工程环境足迹评估方法和案例研究. 中国环境科学. 2024(05): 2905-2915 . ![]() | |
5. | 江建斌. 上海某污染场地土壤原位修复参数研究. 清洗世界. 2024(05): 51-53 . ![]() | |
6. | 陈汐昂,王文兵,李瑞飞,李春阳,范淇峰,张梦,相明辉,李辉. 场地修复异位热脱附碳排放核算、优化与预测. 环境工程学报. 2024(04): 1073-1082 . ![]() | |
7. | 田平,郑静芬,杜耀,朱于红,邹传,杨尚源,周鸿. 基于环境足迹分析方法的石油烃污染场地土壤绿色修复技术评价应用研究. 环境污染与防治. 2024(08): 1149-1155 . ![]() | |
8. | 高旭,邱成浩,张强,徐鹏程,王雯冉,王栋,韩进,曲常胜. 土壤污染修复工程异味控制技术应用研究. 绿色科技. 2024(14): 90-94+112 . ![]() | |
9. | 田平,朱于红,杜耀,田明鑫,陈彩成,杨尚源,徐文菲,周鸿. 合肥某污染场地修复过程的环境足迹核算及不确定性研究. 环境污染与防治. 2024(10): 1515-1520 . ![]() | |
10. | 白雨虹,高大文. Trametes versicolor修复石油烃污染土壤及温室气体释放特征. 化工进展. 2024(10): 5922-5931 . ![]() | |
11. | 许维通,王昆,宋广翰,卢俊,钟方海,贺志超,梁国栋,闫斌,王燕飞. 有机污染土壤异位热脱附修复的碳足迹分析——以广州市某溶剂厂污染场地为例. 中国资源综合利用. 2024(11): 208-212 . ![]() | |
12. | 王福山,王怡如,刘欢. 新形势下土壤修复产业发展面临的挑战与机遇. 皮革制作与环保科技. 2024(23): 153-155 . ![]() | |
13. | 孟豪,梅丹兵,邓璟菲,刘鹏,董璟琦,张红振,李香兰. 北京市污染场地土壤修复工程实证分析. 中国环境科学. 2023(02): 764-771 . ![]() | |
14. | 肖萌,孟豪,董璟琦,张红振,周通,吴龙华,李香兰. 农田污染钝化修复环境影响定量评估方法与案例分析. 中国环境科学. 2023(07): 3571-3581 . ![]() | |
15. | 丁乙,尹剑,姜洪涛,夏芮兹,卫丹琪,罗心愿. 珠三角碳达峰系统动力学预测. 环境工程. 2023(07): 22-29 . ![]() | |
16. | 金嘉路,杨逸文,王震,张婉莹,周龑,张峰,李磊,崔长征. 污染场地多相抽提低碳修复布井方案优化模拟研究. 环境科学研究. 2023(08): 1596-1606 . ![]() | |
17. | 姜文超. 污染场地热脱附技术的绿色低碳评价与措施研究. 环境污染与防治. 2023(08): 1189-1194 . ![]() | |
18. | 孟豪,梅丹兵,邓璟菲,刘鹏,董璟琦,肖萌,张红振,李香兰. 天津市污染地块土壤与地下水修复实证分析. 中国环境科学. 2023(09): 4760-4767 . ![]() | |
19. | 吴东海,韩俊楠,刘斌,袁曾路,毛竹. 污染土壤热脱附技术的碳达峰碳中和路径初探. 环境工程. 2023(S2): 701-706 . ![]() | |
20. | 桑春晖,杨欣桐,李香兰,张红振. 基于SEFA方法的异位土壤修复环境足迹分析——以某钢铁厂为例. 中国环境科学. 2023(10): 5359-5367 . ![]() | |
21. | 王翀,吴春发,傅赵聪,张宇,刘东,张锦路. 不同淋洗剂对砷污染土壤多级淋洗效果比较. 生态与农村环境学报. 2023(10): 1308-1315 . ![]() | |
22. | 孟豪,董璟琦,张红振,肖萌,李香兰. 污染场地风险管控碳排放计算方法及案例分析. 中国环境科学. 2023(S1): 368-375 . ![]() | |
23. | 周实际,孙慧洋,李颖臻,袁航,冯亚松,杨玉玲,杜延军. 污染土壤稳定化碳排放计算方法及案例研究. 中国环境科学. 2022(10): 4840-4848 . ![]() | |
24. | 赵金辉,李景顺,王潘乐,侯高杰. 基于Lasso-BP神经网络模型的河南省碳达峰路径研究. 环境工程. 2022(12): 151-156+164 . ![]() |